Skip to main content
Log in

A NE-Trending Oblique-Slip Fault Responsible for the 2016 Zaduo Earthquake (Qinghai, China) Revealed by InSAR Data

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Twelve Sentinel-1 images are used to measure the surface displacements caused by the Zaduo earthquake on 17 October 2016 in Qinghai, China. Comprehensive analysis of the local geologic structure, focal mechanisms, relocated aftershocks, and fault geometrical parameters from nonlinear inversions of the InSAR data indicates that a NE-trending fault with a strike of ~ 61°, namely the Aduo fault, was responsible for this event. Further geodetic inversions for finite fault models show that the dip angle of this fault is 75° to the SE. The majority of the slip occurred at the depth from 5 km to 17 km, and the normal-slip component was comparable to the strike-slip component. The peak slip of ~ 31 cm occurred at a depth of ~ 10 km. The InSAR determined moment is 9.61 × 1017 N m with a rigidity of 30 GPa, equivalent to Mw 5.9. The geological map reveals that the Aduo fault was characterized by a left-lateral strike-slip component in the past, as evidenced by the offset of Paleogene sedimentary rocks. Our results for the Zaduo earthquake suggest that the Qiangtang block probably consists of two or more sub-blocks with different eastward extrusion velocities and that the deformation of the Qiangtang block is occurring not only along its boundaries but also in its interior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armijo, R., Tapponnier, P., & Tonglin, H. (1989). Late Cenozoic right lateral strike-slip faulting in southern Tibet. Journal of Geophysical Research, 94, 2787–2838.

    Article  Google Scholar 

  • Avouac, J. P., Meng, L., Wei, S., Wang, T., & Ampuero, J.-P. (2015). Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nature Geoscience, 8, 708–713.

    Article  Google Scholar 

  • Bell, J. W., Amelung, F., Ferretti, A., Bianchi, M., & Novali, F. (2008). Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial recharge. Water Resources Research, 44, W02407. https://doi.org/10.1029/2007WR006152.

    Article  Google Scholar 

  • Bürgmann, R., Ayhan, M. E., Fielding, E. J., Wright, T. J., McClusky, S., Aktug, B., et al. (2002). Deformation during the 12 November 1999 Düzce, Turkey, earthquake from GPS and InSAR Data. Bulletin of the Seismological Society of America, 92, 161–171.

    Article  Google Scholar 

  • Deng, Q., Chang, Y., Hsu, K., & Fan, F. (1979). On the tectonic stress field in China and its relation to plate movement. Physics of the Earth and Planetary Interiors, 18, 257–273.

    Article  Google Scholar 

  • Deng, Q., Ran, Y., Yang, X., Min, W., & Chu, Q. (2007). Map of Active Tectonics in China. Beijing: Seimological Press.

    Google Scholar 

  • Dziewonski, A. M., Chou, T.-A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research, 86, 2825–2852.

    Article  Google Scholar 

  • Ekström, G., Nettles, M., & Dziewonski, A. M. (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002.

    Article  Google Scholar 

  • England, P. C., & Houseman, G. A. (1989). Extension during continental convergence, with application to the Tibetan Plateau. Journal of Geophysical Research, 94, 17561–17579. https://doi.org/10.1029/JB094iB12p17561.

    Article  Google Scholar 

  • England, P., & McKenzie, D. (1982). A thin viscous sheet for continental deformation. Geophysical Journal of the Royal Astronomical Society, 70, 295–321.

    Article  Google Scholar 

  • Fang, L. H., Wu, J. P., Wang, W. L., Du, W. K., Su, J. R., Wang, C. Z., et al. (2015). Aftershock Observation and Analysis of the 2013 M s 7.0 Lushan Earthquake. Seismological Research Letters, 86(4), 1135–1142. https://doi.org/10.1785/0220140186.

    Article  Google Scholar 

  • Farr, T., Rosen, P., & Caro, E. (2000). The shuttle radar topography mission. Reviews of Geophysics, 45(2), 37–55. https://doi.org/10.1029/2005RG000183.

    Article  Google Scholar 

  • Feng, W., Li, Z., Elliott, J. R., Fukushima, Y., Hoey, T., Singleton, A., et al. (2013). The 2011 M w 6.8 Burma earthquake: Fault constraints provided by multiple SAR techniques. Geophysical Journal International, 195, 650–660.

    Article  Google Scholar 

  • Flesch, L. M., Haines, A. J., & Holt, W. E. (2001). Dynamics of the India-Eurasia collision zone. Journal of Geophysical Research, 106, 16435–16460.

    Article  Google Scholar 

  • Fujiwara, S., Nishimura, T., Murakami, M., Nakagawa, H., & Tobita, M. (2000). 2.5-D surface deformation of M 6.1 earthquake near Mt Iwate detected by SAR interferometry. Geophysical Research Letter, 27, 2049–2052.

    Article  Google Scholar 

  • Fujiwara, T., Kodaira, S., No, T., Kaiho, Y., Takahashi, N., & Kaneda, Y. (2011). The 2011 Tohoku-Oki earthquake: displacement reaching the trench axis. Science, 334, 1240.

    Article  Google Scholar 

  • Fukahata, Y., & Wright, T. J. (2008). A non-linear geodetic data inversion using ABIC for slip distribution of a fault with an unknown dip angle. Geophysical Journal International, 173, 353–364.

    Article  Google Scholar 

  • Funning, G. J., Parsons, B., Wright, T. J., Jackson, J. A., & Fielding, E. J. (2005). Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery. Journal of Geophysical Research, 110, B09406. https://doi.org/10.1029/2004JB003338.

    Article  Google Scholar 

  • Goldstein, R., & Werner, C. (1998). Radar interferogram filtering for geophysical applications. Geophysical Research Letter, 25(21), 4035–4038.

    Article  Google Scholar 

  • Goldstein, R., Zebker, H., & Werner, C. (1988). Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Science, 23(4), 713–720.

    Article  Google Scholar 

  • Hanssen, R. F. (2001). Radar Interferometry: Data interpretation and error analysis. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31, L23611. https://doi.org/10.1029/2004GL021737.

    Article  Google Scholar 

  • Jiang, G., Wen, Y., Liu, Y., Xu, X., Fang, L., Chen, G., et al. (2015). Joint analysis of the 2014 Kangding, southwest China, earthquake sequence with seismicity relocation and InSAR inversion. Geophysical Research Letter, 42, 3273–3281. https://doi.org/10.1002/2015GL063750.

    Article  Google Scholar 

  • Jiang, G., Xu, C., Wen, Y., Liu, Y., Yin, Z., & Wang, J. (2013). Inversion for coseismic slip distribution of the 2010 Mw 6.9 Yushu earthquake from InSAR data using angular dislocations. Geophysical Journal International, 194(2), 1011–1022.

    Article  Google Scholar 

  • Jónsson, S., Zebker, H., Segall, P., & Amelung, F. (2002). Fault slip distribution of the 1999 M w 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bulletin of the Seismological Society of America, 92, 1377–1389.

    Article  Google Scholar 

  • Klein, F. W. (2002). User’s guide to HYPOINVERSE-2000, a Fortran program to solve for earthquake locations & magnitudes. US Geological Survey.

  • Laske, G., Masters, G., Ma, Z., Pasyanos, M. (2013). Update on CRUST1.0—A 1-degree Global Model of Earth’s Crust. Geophysical Research Abstracts 15. Abstract EGU2013-2658.

  • Liang, S., Gan, W., Shen, C., Xiao, G., Liu, J., Chen, W., et al. (2013). Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. Journal of Geophysical Research: Solid Earth, 118, 5722–5732. https://doi.org/10.1002/2013JB010503.

    Article  Google Scholar 

  • Liu, Y., Xu, C., Wen, Y., He, P., & Jiang, G. (2012). Fault rupture model of the 2008 Dangxiong (Tibet, China) M w 6.3 earthquake from Envisat and ALOS data. Advance Space Research, 50, 952–962.

    Article  Google Scholar 

  • Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K. et al. (1993). The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364, 138–142.

    Article  Google Scholar 

  • McCaffrey, R. (2005). Block kinematics of the Pacific-North America plate boundary in the southwestern United States from inversion of GPS, seismological, and geologic data. Journal of Geophysical Research, 110, B07401. https://doi.org/10.1029/2004JB003307.

    Article  Google Scholar 

  • Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018–1040.

    Google Scholar 

  • Parsons, B., Wright, T. J., Rowe, P., Andrews, J., Jackson, J., Walker, R., et al. (2006). The 1994 Sefidabeh (eastern Iran) earthquakes revisited: New evidence from satellite radar interferometry and carbonate dating about the growth of an active fold above a blind thrust fault. Geophysical Journal International, 164, 202–217.

    Article  Google Scholar 

  • Resor, P. G. (2003). Deformation associated with continental normal faults. PhD dissertation, Stanford University.

  • Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method. Wiley series in probability and mathematical statistics. New York: Wiley.

    Book  Google Scholar 

  • Scheiber, R., & Moreira, A. (2000). Coregistration of interferometric SAR images using spectral diversity. IEEE Transactions on Geoscience and Remote Sensing, 38(5), 2179–2191.

    Article  Google Scholar 

  • Stark, P. B., & Parker, R. L. (1995). Bounded variable least squares: an algorithm and application. Computational Statistics, 10, 129–141.

    Google Scholar 

  • Tapponier, P., & Molnar, P. (1977). Active faulting and tectonics in China. Journal of Geophysical Research, 82, 2905–2930.

    Article  Google Scholar 

  • Tapponnier, P., Xu, Z., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., et al. (2001). Oblique step-wise growth of the Tibetan Plateau. Science, 294, 1671–1677.

    Article  Google Scholar 

  • Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the Northern Hayward fault, California. Bulletin of the Seismological Society of America, 90, 1353–1368.

    Article  Google Scholar 

  • Welstead, S. T. (1999). Fractal and wavelet image compression techniques (pp. 51–54). Washington: SPIE Optical Engineering Press.

    Book  Google Scholar 

  • Wen, Y., Xu, C., Liu, Y., & Jiang, G. (2016). Deformation and source parameters of the 2015 M w 6.5 earthquake in Pishan, Western China, from Sentinel-1A and ALOS-2 data. Remote Sensing, 8(2), 134. https://doi.org/10.3390/rs8020134.

    Article  Google Scholar 

  • Werner, C., Wegmüller, U., Strozzi, T., Wiesmann, A. (2001). GAMMA SAR and interferometric processing software. Proceeding of ERS ENVISAT Symposium, Gothenburg, Sweden, 16–20 Oct.

  • Xu, C. J., Ding, K. H., Cai, J. Q., & Grafarend, E. W. (2009a). Methods of determining weight scaling factors for geodetic-geophysical joint inversion. Journal of Geodynamics, 47, 39–46.

    Article  Google Scholar 

  • Xu, W., Dutta, R., & Jónsson, S. (2015). Identifying active faults by improving earthquake locations with InSAR data and bayesian estimation: The 2004 Tabuk (Saudi Arabia) Earthquake Sequence. Bulletin of the Seismological Society of America, 105(2A), 765–775.

    Article  Google Scholar 

  • Xu, X., Wen, X., Yu, G., Chen, G., Klinger, Y., Hubbard, J., et al. (2009b). Coseismic reverse- and oblique-slip surface faulting generated by the 2008 M w 7.9 Wenchuan earthquake, China. Geology, 37(6), 515–518.

    Article  Google Scholar 

  • Xu, C., Xu, B., Wen, Y., & Liu, Y. (2016). Heterogeneous fault mechanisms of the 6 October 2008 M w 6.3 Dangxiong (Tibet) earthquake using Interferometric Synthetic Aperture Radar observations. Remote Sensing, 8, 228. https://doi.org/10.3390/rs8030228.

    Article  Google Scholar 

  • Xu, X., Yu, G., Klinger, Y., Tapponnier, P., & Van Der Woerd, J. (2006). Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (M w 7.8), northern Tibetan Plateau, China. Journal of Geophysical Research, 111, B05316. https://doi.org/10.1029/2004JB003488.

    Article  Google Scholar 

  • Yu, C., Penna, N. T., & Li, Z. (2017). Generation of real-time mode high-resolution water vapor fields from GPS observations. Journal of Geophysical Research, 122, 2008–2025. https://doi.org/10.1002/2016JD025753.

    Article  Google Scholar 

  • Zhang, Y., & Zheng, J. (1994). Geological overview in Kokshili, Qinghai and adjacent areas. Beijing: China Seismological Press.

    Google Scholar 

Download references

Acknowledgements

The authors thank the Editor and two anonymous reviewers for their constructive comments. The SAR images were obtained from the ESA Scientific Data Hub (https://scihub.esa.int). The geological map was obtained from the National Geological Archives of China (http://geodata.ngac.cn).

This study is supported by the Hong Kong Scholars Program, the National Natural Science Foundation of China (Nos. 41774011, 41721003, 41404012, and 4151101233), the National Earthquake Prediction Experiment Site in the Sichuan-Yunnan Region Program (No. 2017CESE0103), the Earthquake Monitoring and Forecasting Areas Project (No. 2018010103) and the National Key Basic Research Development Program (973 program) (Nos. 2013CB733304 and 2013CB733303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangmao Wen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, G., Wen, Y., Li, K. et al. A NE-Trending Oblique-Slip Fault Responsible for the 2016 Zaduo Earthquake (Qinghai, China) Revealed by InSAR Data. Pure Appl. Geophys. 175, 4275–4288 (2018). https://doi.org/10.1007/s00024-018-1948-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1948-0

Keywords

Navigation