Skip to main content

Advertisement

Log in

Light Interconnects for Medium-Temperature (550–650°С) Solid-Oxide Fuel Cells

  • Published:
Materials Science Aims and scope

We study the heat resistance and electric conductivity of the specimens of Crofer 22 APU steel, which is traditionally used for the production of interconnects of solid-oxide fuel cells, a bulk composite based on the Ti2AlC MAX phase, and a vacuum-arc coating of the Ti–Al–C system on a thin (0.5 mm) VT1-0 titanium sheet in the intact state and after long-term holding (1000 h) in air at 600°. We study the evolution of the phase compositions of the composite and the coating in the course of long-term holding in oxidizing media and the changes in the oxidation resistance and electric conductivity observed in the course of this evolution. It is shown that thin (0.5 mm) titanium interconnects with the indicated coating may serve as an efficient alternative to the interconnects made of the Crofer-type steel, which enables us to avoid the negative influence of chromium on the serviceability of solid-oxide fuel cells and significantly (by ~ 50%) decrease the weight of batteries of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. K. C. Wincewicz and J. S. Cooper, “Taxonomies of SOFC material and manufacturing alternatives,” J. Power Sources, 140, No. 2, 280–296 (2005).

    Article  CAS  Google Scholar 

  2. P. Piccardo, S. Chevalier, R. Molins, M. Viviani, G. Caboche, A. Barbucci, M. Sennour, and R. Amendola, “Metallic interconnects for SOFC: characterization of their corrosion resistance in hydrogen/water atmosphere and at the operating temperatures of differently coated metallic alloys,” Surf. Coat. Technol., 201, 4471–4475 (2006).

    Article  CAS  Google Scholar 

  3. V. Podhurska, B. Vasyliv, A. Ivasyshyn, O. Ostash, O. Vasylyev, T. Prikhna, V. Sverdun, and Y. Brodnikovskyi, “Behavior of solid oxide fuel cell materials in technological environments,” Fr.-Ukr. J. Chem., 6, No. 1, 115–127 (2018).

    Article  CAS  Google Scholar 

  4. N. Shaigan, W. Qu, D. G. Ivey, and W. Chen, “A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects,” J. Power Sources, 195, 1529–1542 (2010).

    Article  CAS  Google Scholar 

  5. X. H. Wang and Y. C. Zhon, “Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review,” J. Mater. Sci. Technol., 26, No. 5, 385–416 (2010).

    Article  Google Scholar 

  6. Ch. Niels, R. Küngas, and T. Blennow, MAX Phase Materials for Use in Solid Oxide Fuel Cells and Solid Oxide Electrolysis Cells [in Ukrainian], EU Patent EP 2 945 207 A1, Publ. 18.11.2015.

  7. O. P. Ostash, T. O. Prikhna, A. D. Ivasyshyn, V. Y. Podhurska, T. B. Basyuk, O. D. Vasyliev, and Y. M. Brodnikovskii, Material for Manufacturing Interconnect Elements of Solid-Oxide Fuel Cells [in Ukrainian], UA patent No. 111082, Publ. on 25.03.16, Bull. No. 6.

  8. O. P. Ostash, T. O. Prikhna, V. Y. Podhurska, V. B. Sverdun, and B. D. Vasyliv, Material for Manufacturing Interconnect Elements of Solid-Oxide Fuel Cells [in Ukrainian], UA Patent 137888, Publ. on 11.11.19, Bull. No. 21.

  9. T. Prikhna, O. Ostash, V. Sverdun, M. Karpets, T. Zimych, A. Ivasyshin, T. Cabioc’h, P. Chartier, S. Dub, L. Javorska, V. Podgurska, P. Figel, J. Cyboroń, V. Moshchil, V. Kovylaev, S. Ponomaryov, V. Romaka, T. Serbenyuk, and A. Starostina, “Presence of oxygen in Ti–Al–C MAX phases-based materials and their stability in oxidizing environment at elevated temperatures,” Acta Phys. Pol. A, 133, No. 4, 789–793 (2018).

  10. A. Ivasyshyn, O. Ostash, T. Prikhna, V. Podhurska, and T. Basyuk, “Oxidation resistance of materials based on Ti3AlC2 nanolaminate at 600°C in air,” Nanoscale Res. Lett., 11, Article No. 358 (2016); https://doi.org/10.1186/s11671-016-1571-x.

  11. D. A. H. Hanaor and C. S. Sorrel, “Review of the anatase to rutile phase transformation,” J. Mater. Sci., 46, 855–874 (2011).

    Article  CAS  Google Scholar 

  12. A. Mockuté, M. Dahlgvist, L. Hultman, P. Persson, and J. Rosén, “Oxygen incorporation in Ti2AlC thin films studied by electron energy loss spectroscopy and ab initio calculations,” J. Mater. Sci., 48, No. 10, 3686–3691 (2013).

    Article  Google Scholar 

  13. O. P. Ostash, T. O. Prikhna, O. S. Kuprin, V. Y. Podhurska, V. B. Sverdun, and B. D. Vasyliv, A Method for Manufacturing Thin Interconnects for Solid Oxide Fuel Cells [in Ukrainian], UA Patent No. 121831, Publ. on 27.07.20, Bull. No. 14.

  14. M. Yoshida, Y. Hoshiyama, J. Ommyoji, and A. Yamaguchi, “Reaction mechanism for the synthesis of Ti3AlC2 through an intermediate carbide of Ti3AlC from elemental Ti, Al, and C powder mixture,” J. Ceram. Soc. Jap., 118, No. 1, 37–42 (2010).

    Article  CAS  Google Scholar 

  15. O. Wilhelmsson, J.-P. Palmquist, E. Lewin, J. Emmerlich, P. Eklund, P. O. A. Persson, H. Högberg, S. Li, R. Ahuja, O. Eriksson, L. Hultman, and U. Jansson, “Deposition and characterization of ternary thin films within the Ti–Al–C system by DC magnetron sputtering,” J. Cryst. Growth, 291, 290–300 (2006).

    Article  CAS  Google Scholar 

  16. Y.-L. Du, “Electronic structure and elastic properties of Ti3AlC from first-principles calculations,” Chin. Phys. Lett., 26, No. 11, 117102.1–117102.3 (2009).

    Google Scholar 

  17. Y. Kang and S. Han, “Antiperovskite oxides as promising candidates for high-performance ferroelectric photovoltaics: First-principles investigation on Ba4As2O and Ba4Sb2O,” ACS Appl. Mater. Interfaces, 12, No. 39, 43798–43804 (2020).

    Article  CAS  Google Scholar 

  18. B. Warcholinski, A. Gilewicz, O. Lupicka, A. S. Kuprin, G. N. Tolmachova, V. D. Ovcharenko, I. V. Kolodiy, M. Sawczak, A. E. Kochmanska, P. Kochmanski, T. A. Kuznetsova, T. I. Zubar, A. L. Khudoley, and S. A. Chizhik, “Structure of CrON coatings formed in vacuum arc plasma fluxes,” Surf. Coat. Technol., 309, 920–930 (2017).

    Article  CAS  Google Scholar 

  19. ASTM F 43-99. Test Methods for Resistivity of Semiconductor Materials, CA, SEMI (2005).

  20. I. A. Mahmood, W. W. Jameel, and L. A. Khaleel, “Improved oxidation resistance for thermal barrier ceramic coating protect,” Int. J. Res. Eng. Technol., 1, No. 5, 77–86 (2013).

    Google Scholar 

  21. B. P. Bewlay, S. Nag, A. Suzuki, and M. J. Weimer, “TiAl alloys in commercial aircraft engines,” Mater. High Temp., 33, Nos. 4-5, 549–559 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Ostash.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 57, No. 2, pp. 70–75, March–April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostash, O.P., Prikhna, T.O., Podhurska, V.Y. et al. Light Interconnects for Medium-Temperature (550–650°С) Solid-Oxide Fuel Cells. Mater Sci 57, 215–220 (2021). https://doi.org/10.1007/s11003-021-00534-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-021-00534-1

Keywords

Navigation