Skip to main content
Log in

New instability model leading the wrinkling at the positive-curvature arc part during the tube hydro-forging process

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The tube hydroforging process (THFG) is an advanced technology for manufacturing tubular components with complex cross-sections. The positive-curvature arc is one of the most fundamental and difficult-to-form features of complex cross-sections. However, its wrinkling mechanism in the THFG process cannot be explained by the existing theory. This restricts the application of the technology. First, because of the bending deformation caused by the excessive circumferential force, compression instability occurs at the positive-curvature arc part. This results in wrinkling similar to that in the conventional linear part. In addition, owing to the existence of the positive-curvature arc, the circumferential force produces a component force along the vertical direction that causes rigid displacement of the materials. This yields another new instability model: motion instability. The corresponding critical pressures for the two instability models were determined by adopting static method and energy methods respectively. Theoretically, motion instability is dominant in the early stages of compression, whereas compression instability is dominant in the subsequent stages. However, considering actual production, the correlations between the critical pressures of the different parts were compared. The wrinkling of the linear part inhibits the occurrence of compression instability in the positive-curvature arc. Thus, wrinkling of the arc can be caused only by motion instability. Therefore, the critical pressure for motion instability is defined as the critical pressure required for the positive-curvature arc. In addition, a forming window that considers the critical pressure of each part was established successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Abdelkefi, A., Guermazi, N., Boudeau, N., Malécot, P., Haddar, N.: Effect of the lubrication between the tube and the die on the corner filling when hydroforming of different cross-sectional shapes. Int. J. Adv. Manuf. Technol. 87, 1169–1181 (2016)

    Article  Google Scholar 

  • Cao, J.: Prediction of plastic wrinkling using the energy method. J. Appl. Mech. 66, 646 (1999)

    Article  Google Scholar 

  • Cao, J., Boyce, M.C.: Wrinkling behavior of rectangular plates under lateral constraint. Int. J. Solids Struct. 34, 153–176 (1997)

    Article  Google Scholar 

  • Cao, J., Wang, X.: An analytical model for plate wrinkling under tri-axial loading and its application. Int. J. Mech. Sci. 42, 617–633 (2000)

    Article  Google Scholar 

  • Chen, Y.Z., Liu, W., Xu, Y.C., Yuan, S.J.: Analysis and experiment on wrinkling suppression for hydroforming of curved surface shell. Int. J. Mech. Sci. 104, 112–125 (2015)

    Article  Google Scholar 

  • Chen, G., Yao, S.J., Chen, B.G., Chu, G.N.: Research on tube hydro-forging process of trapezoid-sectional parts. Int. J. Adv. Manuf. Technol. 107, 1901–1908 (2020)

    Article  Google Scholar 

  • Chu, G.N., Chen, G., Lin, Y.L., Yuan, S.J.: Tube hydro-forging - a method to manufacture hollow component withvaried cross-section perimeters. J. Mater. Process. Technol. 265, 150–157 (2019)

    Article  Google Scholar 

  • Chu, G.N., Chen, G., Wang, G.D., Fan, Z.G., Li, H.: Analysis of warping failure in tube hydro-forging. Int. J. Mech. Sci. 165, 105216 (2020)

    Article  Google Scholar 

  • Donnell, L.H., Akron, O.: A new theory for the buckling of thin cylinders under axial compression and bending. Trans. ASME 56, 795–806 (1934)

    Google Scholar 

  • Feng, H., Han, C.: Deformation behavior in the hydroforming of overlapping tubular blanks. Int. J. Mach. Tools Manuf 158, 03624 (2020)

    Article  Google Scholar 

  • Gouveia, B.P.P., Alves, M.L., Rosa, P.A.R., Martins, P.A.F.: Compression beading and nosing of thin-walled tubes using a die: experimental and theoretical investigation. Int. J. Mech. Mater. Des. 3, 7–16 (2006)

    Article  Google Scholar 

  • Han, S., Woo, Y., Hwang, T., Oh, I., Moon, Y.H.: Tailor layered tube hydroforming for fabricating tubular parts with dissimilar thickness. Int. J. Mach. Tools Manuf 138, 51–65 (2019)

    Article  Google Scholar 

  • Hwang, Y.M., Altan, T.: FE simulation of the crushing of circular tubes into triangular cross-sections. J. Mater. Process. Technol. 125, 833–838 (2002)

    Article  Google Scholar 

  • Hwang, Y.M., Huang, L.S.: Friction tests in tube hydroforming. Proc. i. Mech. E Part b. J. Eng. Manuf. 219, 587–593 (2005)

    Article  Google Scholar 

  • Jae, H.R., Sang, W.H., Chester, J.V., Young, H.M.: Manufacturing of a wire-reinforced aluminum tube via hydroforming process. Int. J. Mach. Tools Manuf 143, 1–15 (2019)

    Article  Google Scholar 

  • Li, S.H., Xu, X.H., Zhang, W.G., Lin, Z.Q.: Study on the crushing and hydroforming processes of tubes in a trapezoid-sectional die. Int. J. Adv. Manuf. Technol. 43, 67–77 (2009)

    Article  Google Scholar 

  • Li, H., Liu, H.R., Liu, N., Sun, H., Liu, B.Y.: Towards sensitive prediction of wrinkling instability in sheet metal forming by introducing evolution of triple nonlinearity: tube forming. Int. J. Mech. Sci. 161–162, 105054 (2019)

    Article  Google Scholar 

  • Liu, G., Peng, J.Y., Yuan, S.J., Teng, B.G., Li, K.: Analysis on critical conditions of sidewall wrinkling for hydroforming of thin-walled Tee-joint. Int. J. Mach. Tools Manuf 97, 42–49 (2015)

    Article  Google Scholar 

  • Liu, Z., Lang, L.H., Ruan, S.W., Zhang, M., Lv, F.L., Qi, J.: Effect of internal pressure assisted on hydroforming for CP800 high-strength steel torsion beam. J. Braz. Soc. Mech. Sci. 41, 90–102 (2019)

    Article  Google Scholar 

  • Narayanasamy, R., Loganathan, C.: Some studies on wrinkling limit of commercially pure aluminium sheet metals of different grades when drawn through conical and tractrix dies. Int. J. Mech. Mater. Des. 3, 129–144 (2006)

    Article  Google Scholar 

  • Nikhare, C., Weiss, M., Hodgson, P.D.: Die closing force in low pressure tube hydroforming. J. Mater. Process. Technol. 210, 2238–2244 (2010)

    Article  Google Scholar 

  • Nikhare, C., Weiss, M., Hodgson, P.D.: Two-dimensional complex shape analyses during low pressure tube. Adv. Mater. Manuf. Charact. 6, 37–43 (2016)

    Google Scholar 

  • Watson, M., Long, H., Lu, B.: Investigation of wrinkling failure mechanics in metal spinning by Box-Behnken design of experiments using finite element method. Int. J. Adv. Manuf. Technol. 78, 981–995 (2015)

    Article  Google Scholar 

  • Wong, C.C., Dean, T.A., Lin, J.: A review of spinning, shear forming and flow forming processes. Int. J. Mach. Tools Manuf 43, 1419–1435 (2003)

    Article  Google Scholar 

  • Yu, T.X., Johnson, W.: The buckling of annular plates in relation to the deep-drawing process. Int. J. Mech. Sci. 24, 175–188 (1982)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the State Key Program of the National Natural Science Foundation of China (Grant No. U1937205), National Natural Science Foundation of China (Grant No. 51775134), and Major Scientific and Technological Innovation Program of Shandong (Grant Nos. 2019TSLH0103 and 2020CXGC010303). The authors wish to express their appreciation for these funding organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The solution of the energy method

From Eq. (23), it can be observed that the critical pressure \(p_{{{\text{cri}}}}^{1}\) is related to K, n, εθ, t0, and L0. Here, K, n, and t0 are specified, whereas εθ and L0 are unknown. Therefore, to establish the relationship between the compressive strain εθ and \(p_{{{\text{cri}}}}^{1}\), it is necessary to first establish the relationship between L0 and εθ.

Cao (1999) indicated that when the energy method was used to solve for the critical pressure, with an increase in the pressure, the wrinkling number increased, whereas the wavelength and wave height decreased. When the wavenumber attained a certain value, wrinkling was considered to be absent. Similar phenomena were observed during THFG. According to Eqs. (811), the initial length of the wrinkling plate L0 can be resolved using the wrinkling wavelength L. Then, Fig. 

Fig. 26
figure 26

Relationship between critical pressure and compressive strain with different wrinkling wavelengths

26 shows the relationship between the critical pressure and compressive strain at different wrinkling wavelengths L. Considering the wavelengths Ln and Ln+1 as examples, the two curves intersect at a point εθ,n. When the compressive strain is higher than εθ,n, the critical pressure required for the wavelength Ln+1 is higher than that required for the wavelength Ln. Therefore, the final wrinkling wavelength tends to Ln+1. When the compressive strain is smaller than εθ,n, the final wrinkling wavelength tends to Ln. For this reason, the transition relationship between Ln+1 and Ln+2 is also identical. To obtain the critical pressure under different compressive strains, assuming that there is a group of increasing sequence L1, L2,Ln, the compressive strain (which is the intersection point of the two adjacent wavelengths) is calculated. It satisfies the expression

$$p_{{{\text{cri,}}n}}^{1} \left( {L_{n} ,\varepsilon_{\theta ,n} } \right) = p_{{{\text{cri}},n + 1}}^{1} \left( {L_{n + 1} ,\varepsilon_{\theta ,n} } \right)$$
(A-1)

After the K and n values are specified, the transition point εθ,n for each wavelength can be calculated through computer programming. Subsequently, these are substituted back into Eq. (23) to obtain \(p_{{{\text{cri}}}}^{1}\). That is, the relationship between εθ and \(p_{{{\text{cri}}}}^{1}\) can be established:

$$p_{{{\text{cri}}}}^{1} = f\left( {\varepsilon_{\theta } } \right)$$
(A-2)

It can be observed from Eq. (23) that the \(p_{{{\text{cri}}}}^{1}\) obtained is related to only the material properties (K and n). It is not related to the other in-process parameters such as the compression displacement, friction coefficient, and geometric characteristics. Therefore, this study combined Eq. (23) with the stress–strain model to obtain the critical pressure \(p_{{{\text{cri}}}}^{1}\) that satisfies the actual production. This is shown in Fig. 

Fig. 27
figure 27

Calculation flowchart

27.

It can be observed from Fig. 9 that owing to friction, the circumferential strain at point B is the largest for the positive-curvature arc part. Thus, compression instability is most likely to occur at point B. The specific solution process is as follows: First, the material properties (K, n), geometric parameters (r1, r2, and θ1), friction coefficient (μ), and initial thickness (t0) are input. The variation rule between the compressive strain εθ and \(p_{{{\text{cri}}}}^{1}\) (from Eq. (23)) is obtained using the energy method. First, the initial pressure \(p_{i}\) and circumferential force \(F_{\theta ,i}\) are provided. The corresponding compressive strain \(\varepsilon_{\theta ,i}^{{}}\) at point B is obtained using Eq. (28), and the required support pressure \(p_{{{\text{cri}},i}}^{1}\) is obtained by substituting the strain \(\varepsilon_{\theta ,i}^{{}}\) into the variation rule. If \(\left| {p_{i} /p_{{{\text{cri}},i}}^{1} - 1} \right| \succ 1{\text{\% }}\), then let \(p_{i} { = }p_{{{\text{cri}},i}}^{1}\), and re-substitute \(p_{i}\) into the computation cycle to calculate the new strain \(\varepsilon_{\theta ,i}^{{}}\) under the circumferential force \(F_{\theta ,i}\). When the error between p0 and \(p_{{{\text{cri}},{\text{i}}}}^{1}\) is less than 1%, the computational cycle is terminated. Currently, \(p_{{{\text{cri}},{\text{i}}}}^{1}\) represents the required support pressure for a certain \(F_{\theta ,i}\) and circumferential strain \(\varepsilon_{\theta ,i}^{{}}\). Finally, given a group of increasing sequence \(F_{\theta ,1}\), \(F_{\theta ,2}\), … \(F_{\theta ,i}\), the variation rule between εθ and \(p_{{{\text{cri}}}}^{1}\) that considers a practical process can be constructed. Fig. 27 shows the corresponding calculation flowchart.

Appendix B: Derivation of E w

Next, we explain the solution process for Eq. (21). The equation is a triple integral. Therefore, it should be integrated sequentially. In a previous study, Cao (1999) indicated that the bending effective strain of a wrinkling plate under plane strain can be simplified as

$$\overline{{\varepsilon_{w} }} = \alpha \left| {\ln \frac{r}{{r_{u} }}} \right|$$
(B-1)

Here, \(\alpha { = }{2 \mathord{\left/ {\vphantom {2 {\sqrt 3 }}} \right. \kern-0pt} {\sqrt 3 }}\).

Subsequently, according to the Hollomon hardening law \(\overline{\sigma } = K\overline{\varepsilon }^{n}\), the bending effective stress of the wrinkling plate can be obtained as

$$\overline{{\sigma_{w} }} = K\alpha^{n} \left| {\ln \frac{r}{{r_{u} }}} \right|^{n}$$
(B-2)

Furthermore, the triple integral in Eq. (21) can be simplified to a double integral:

$$E_{w} = \frac{{K\alpha^{n + 1} }}{n + 1}\iint {\left| {\ln \frac{r}{{r_{u} }}} \right|^{n + 1} drdL_{0} }$$
(B-3)

The double integral (B-3) can be solved using a progressive integral. First, integration is performed along the thickness direction:

$$\begin{gathered} \int_{{r_{i} }}^{{r_{o} }} {\left( {\left| {\ln \frac{r}{{r_{u} }}} \right|} \right)^{n + 1} dr} = \int_{{r_{u} }}^{{r_{o} }} {\left( {\left| {\ln \frac{r}{{r_{u} }}} \right|} \right)^{n + 1} dr} + \int_{{r_{i} }}^{{r_{u} }} {\left( {\left| {\ln \frac{{r_{u} }}{r}} \right|} \right)^{n + 1} dr} \hfill \\ \approx \frac{1}{2}\left( {r_{u} - r_{i} } \right)\left( {\ln \frac{{r_{u} }}{{r_{i} }}} \right)^{n + 1} + \frac{1}{2}\left( {r_{o} - r_{u} } \right)\left( {\ln \frac{{r_{o} }}{{r_{u} }}} \right)^{n + 1} { = }\frac{t}{4}\left( {\left( {\ln \frac{{r_{u} }}{{r_{i} }}} \right)^{n + 1} + \left( {\ln \frac{{r_{o} }}{{r_{u} }}} \right)^{n + 1} } \right) \hfill \\ \end{gathered}$$
(B-4)

As shown in Fig. 

Fig. 28
figure 28

Schematic of the wrinkling plate

28, ri and ro denote the radii of the curvatures of the inside and outside surfaces of the wrinkling plate, respectively. These can be obtained from the curvature of the wrinkling plate as follows:

$$\left\{ \begin{gathered} r_{o} = r_{u} + \frac{{t_{0} }}{2} \hfill \\ r_{i} = r_{u} - \frac{{t_{0} }}{2} \hfill \\ \end{gathered} \right.$$
(B-5)

Meanwhile, the neutral layer ru can be expressed as

$$r_{u} = \frac{{\left( {1 + y^{^{\prime}{2}} } \right)^{3/2} }}{y^{\prime\prime}} + \frac{{t_{0} }}{2}$$
(B-6)

Next, the Taylor expansion is used to solve \(\left( {\ln \frac{{r_{u} }}{{r_{i} }}} \right)^{n + 1}\) and \(\left( {\ln \frac{{r_{o} }}{{r_{u} }}} \right)^{n + 1}\) in Eq. (B-4).

$$\left( {\ln \frac{{r_{u} }}{{r_{i} }}} \right)^{n + 1} = \left( { - \ln \left( {1 - \frac{{t_{0} }}{{2r_{u} }}} \right)} \right)^{n + 1} \approx \left( {\frac{t}{{2r_{u} }} + \frac{1}{2}\left( {\frac{{t_{0} }}{{2r_{u} }}} \right)^{2} } \right)^{n + 1} \approx \left( {\frac{{t_{0} }}{{2r_{u} }}} \right)^{n + 1} \left( {1 + \frac{{\left( {n + 1} \right)t_{0} }}{{4r_{u} }}} \right)$$
(B-7)
$$\left( {\ln \frac{{r_{o} }}{{r_{u} }}} \right)^{n + 1} = \left( {\ln \left( {1 + \frac{{t_{0} }}{{2r_{u} }}} \right)} \right)^{n + 1} \approx \left( {\frac{t}{{2r_{u} }} - \frac{1}{2}\left( {\frac{{t_{0} }}{{2r_{u} }}} \right)^{2} } \right)^{n + 1} \approx \left( {\frac{{t_{0} }}{{2r_{u} }}} \right)^{n + 1} \left( {1 - \frac{{\left( {n + 1} \right)t_{0} }}{{4r_{u} }}} \right)$$
(B-8)

Therefore, Eq. (B-4) can be expressed as

$$\int_{{r_{i} }}^{{r_{o} }} {\left( {\left| {\ln \frac{r}{{r_{u} }}} \right|} \right)^{n + 1} dr} = \frac{t}{4}2\left( {\frac{{t_{0} }}{{2r_{u} }}} \right)^{n + 1} = \left( \frac{t}{2} \right)^{n + 2} \frac{1}{{r_{u}^{n + 1} }}$$
(B-9)

Therefore, Eq. (21) can be simplified:

$$E_{w} = \frac{{K\alpha^{n + 1} }}{n + 1}\left( {\frac{{t_{0} }}{2}} \right)^{n + 2} \int {\frac{1}{{r_{u}^{n + 1} }}ds}$$
(B-10)

Next, integrating along the direction of the wrinkling length and substituting Eq. (B-6) into

$$\begin{gathered} \int {\frac{1}{{r_{u}^{n + 1} }}ds} = \int {\left( {\frac{{\left( {1 + y^{^{\prime}{2}} } \right)^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}}} }}{y^{\prime\prime}} + \frac{{t_{0} }}{2}} \right)^{ - n - 1} ds} \approx \int {\left( {\frac{{\left( {1 + y^{^{\prime}{2}} } \right)^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}}} }}{y^{\prime\prime}} + \frac{{t_{0} }}{2}} \right)^{ - n} \frac{y^{\prime\prime}}{{\left( {1 + y^{^{\prime}{2}} } \right)^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}}} }}ds} \hfill \\ = \int {\left( {\frac{{\left( {1 + y^{^{\prime}{2}} } \right)^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}}} }}{y^{\prime\prime}} + \frac{{t_{0} }}{2}} \right)^{ - n} \frac{y^{\prime\prime}}{{\left( {1 + y^{^{\prime}{2}} } \right)^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}}} }}\sqrt {1 + y^{^{\prime}{2}} } dx} \hfill \\ = \int {\left( {\frac{{\left( {1 + y^{^{\prime}{2}} } \right)^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}}} }}{y^{\prime\prime}} + \frac{{t_{0} }}{2}} \right)^{ - n} \frac{1}{{\left( {1 + y^{^{\prime}{2}} } \right)}}dy^{\prime}} \hfill \\ \end{gathered}$$
(B-11)

In a recent study, the cosine function (7) was used to describe the wrinkling shape. Therefore,

$$\left( {\frac{{\left( {1 + y^{^{\prime}{2}} } \right)^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}}} }}{y^{\prime\prime}} + \frac{{t_{0} }}{2}} \right)^{ - n} = \left( {\frac{{\left( {1 + \frac{1}{4}\delta^{2} m^{2} \sin^{2} mx} \right)^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}}} }}{{\frac{1}{2}\delta m^{2} \cos mx}} + \frac{{t_{0} }}{2}} \right)^{ - n}$$
(B-12)

Let \(z = \sin mx\). Substituting it into Eq. (B-12), we obtain

$$\begin{gathered} \left( {\frac{{\left( {1 + \frac{1}{4}\delta^{2} m^{2} \sin^{2} mx} \right)^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}}} }}{{\frac{1}{2}\delta m^{2} \cos mx}} + \frac{{t_{0} }}{2}} \right)^{ - n} = \left( {\frac{{\left( {1 + \frac{1}{4}\delta^{2} m^{2} z^{2} } \right)^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}}} }}{{\frac{1}{2}\delta m^{2} \sqrt {1 - z^{2} } }} + \frac{{t_{0} }}{2}} \right)^{ - n} \hfill \\ = \left( {\frac{{1 + \frac{3}{8}\delta^{2} m^{2} z^{2} }}{{\frac{1}{2}\delta m^{2} }}\left( {1 + \frac{1}{2}z^{2} } \right) + \frac{{t_{0} }}{2}} \right)^{ - n} \hfill \\ = \left( {\left( {\frac{2}{{\delta m^{2} }} + \frac{{t_{0} }}{2}} \right) + \frac{1}{2}z^{2} \left( {\frac{{1 + \frac{3}{8}\delta^{2} m^{2} z^{2} }}{{\frac{1}{2}\delta m^{2} }} + \frac{{\frac{3}{8}\delta^{2} m^{2} }}{{\delta m^{2} }}} \right)} \right)^{ - n} \hfill \\ \approx \left( {\frac{2}{{\delta m^{2} }} + \frac{{t_{0} }}{2}} \right)^{ - n} \hfill \\ \end{gathered}$$
(B-13)

We substitute Eqs. (B-13) back into (B-11). In this study, the upper and lower limits of the integrals in Eq. (B-11) are \(\left( {{L \mathord{\left/ {\vphantom {L 2}} \right. \kern-0pt} 2} - r_{1} \sin \theta_{1}^{\prime} ,{L \mathord{\left/ {\vphantom {L 2}} \right. \kern-0pt} 2} + r_{1} \sin \theta_{1}^{\prime} } \right)\). Subsequently, we obtain

$$\begin{gathered} \int {\left( {\frac{{\left( {1 + y^{^{\prime}{2}} } \right)^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}}} }}{y^{\prime\prime}} + \frac{{t_{0} }}{2}} \right)^{ - n} \frac{1}{{\left( {1 + y^{^{\prime}{2}} } \right)}}dy^{\prime}} \hfill \\ = \int {\left( {\frac{2}{{\delta m^{2} }} + \frac{{t_{0} }}{2}} \right)^{ - n} \frac{1}{{\left( {1 + y^{^{\prime}{2}} } \right)}}dy^{\prime}} = \left( {\frac{2}{{\delta m^{2} }} + \frac{{t_{0} }}{2}} \right)^{ - n} \int {\frac{1}{{\left( {1 + y^{^{\prime}{2}} } \right)}}dy^{\prime}} \hfill \\ = 4\left( {\frac{2}{{\delta m^{2} }} + \frac{{t_{0} }}{2}} \right)^{ - n} \left. {\arctan y^{\prime}} \right|_{0}^{{{{m\delta } \mathord{\left/ {\vphantom {{m\delta } 2}} \right. \kern-0pt} 2}}} - 2\left( {\frac{2}{{\delta m^{2} }} + \frac{{t_{0} }}{2}} \right)^{ - n} \left. {\arctan y^{\prime}} \right|_{0}^{{{L \mathord{\left/ {\vphantom {L 2}} \right. \kern-0pt} 2} - r_{1} \sin \theta_{1}^{\prime} }} \hfill \\ = \left( {\frac{2}{{\delta m^{2} }} + \frac{{t_{0} }}{2}} \right)^{ - n} \left( {4\arctan \left( {\frac{\delta m}{2}} \right) - 2\arctan \left( {\frac{\delta m}{2}\sin mr_{1} \sin \theta_{1}^{\prime} } \right)} \right) \hfill \\ \end{gathered}$$
(B-14)

Finally,

$$E_{w} = \frac{{K\alpha^{n + 1} }}{n + 1}\left( {\frac{{t_{0} }}{2}} \right)^{n + 2} \left( {\frac{2}{{\delta m^{2} }} + \frac{{t_{0} }}{2}} \right)^{ - n} \left( {4\arctan \left( {\frac{\delta m}{2}} \right) - 2\arctan \left( {\frac{\delta m}{2}\sin mr_{1} \sin \theta_{1}^{\prime} } \right)} \right)$$
(B-15)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Chu, G., Liu, X. et al. New instability model leading the wrinkling at the positive-curvature arc part during the tube hydro-forging process. Int J Mech Mater Des (2024). https://doi.org/10.1007/s10999-023-09702-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10999-023-09702-4

Keywords

Navigation