Skip to main content
Log in

Nonlinear static stability and optimal design of nanocomposite multilayer organic solar cells in thermal environment

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The aim of this paper is to investigate the nonlinear static stability of nanocomposite multilayer organic solar cells (NMOSC) on elastic foundations under axial compressive loading in thermal environment. In the previous literatures, the NMOSC consists of five isotropic layers including Al, P3HT:PCBM, PEDOT:PSS, ITO and glass. However, the disadvantages of ITO are high cost, scarcity and low chemical stability. Therefore, the graphene material is chosen to replace the ITO layer in this study. The material properties of graphene layer are assumed to depend on temperature while the elastic moduli of four remaining isotropic layers are constants. For methodology, the geometrical compatibility and nonlinear equilibrium equations are derived based on the Hamilton’s principle and classical plate theory. These equations are solved by using the Galerkin method in order to obtain the expression of critical buckling load and compressive loading – deflection amplitude curves. For geometric optimization problem, three optimization algorithms including social group optimization, basic differential evolution and enhanced colliding bodies optimization algorithms are applied to find the maximum value of the critical buckling loading of NMOSC depending on four geometrical and material variables. Parametric studies are conducted to indicate the influences of temperature increment, geometrical parameters, initial imperfection and elastic foundations on the static stability characteristics of the NMOSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Quoc Quan.

Ethics declarations

Conflict of interests

The authors declare they have no financial interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$ \begin{gathered} \aleph_{11}^{{}} = \frac{{{\mathbb{R}}_{22} }}{\Delta },\aleph_{12}^{{}} = - \frac{{{\mathbb{R}}_{12} }}{\Delta },\aleph_{13}^{{}} = \frac{{{\mathbb{R}}_{12} {\mathbb{Z}}_{12} - {\mathbb{R}}_{22} {\mathbb{Z}}_{11} }}{\Delta },\aleph_{14}^{{}} = \frac{{{\mathbb{R}}_{12} {\mathbb{Z}}_{22} - {\mathbb{R}}_{22} {\mathbb{Z}}_{12} }}{\Delta },\aleph_{15}^{{}} = \frac{{{\mathbb{R}}_{12} - {\mathbb{R}}_{22} }}{{{\mathbb{R}}_{22} {\mathbb{R}}_{11} - {\mathbb{R}}_{12}^{2} }}, \hfill \\ \aleph_{16}^{{}} = \frac{{{\mathbb{R}}_{12} - {\mathbb{R}}_{22} }}{{{\mathbb{R}}_{22} {\mathbb{R}}_{11} - {\mathbb{R}}_{12}^{2} }},\aleph_{22}^{{}} = \frac{{{\mathbb{R}}_{11} }}{\Delta },\aleph_{23}^{{}} = \frac{{{\mathbb{R}}_{12} {\mathbb{Z}}_{11} - {\mathbb{R}}_{11} {\mathbb{Z}}_{12} }}{\Delta },\aleph_{24}^{{}} = \frac{{{\mathbb{R}}_{12} {\mathbb{Z}}_{12} - {\mathbb{R}}_{11} {\mathbb{Z}}_{22} }}{\Delta }, \hfill \\ \end{gathered} $$
$$ \aleph_{25}^{{}} = \frac{{{\mathbb{R}}_{11} - {\mathbb{R}}_{12} }}{{{\mathbb{R}}_{12}^{2} - {\mathbb{R}}_{11} {\mathbb{R}}_{22} }},\aleph_{26}^{{}} = \frac{{{\mathbb{R}}_{12} - {\mathbb{R}}_{22} }}{{{\mathbb{R}}_{22} {\mathbb{R}}_{11} - {\mathbb{R}}_{12}^{2} }},\aleph_{31}^{{}} = \frac{1}{{{\mathbb{R}}_{66} }},\aleph_{32}^{{}} = - \frac{{{\mathbb{Z}}_{66} }}{{{\mathbb{R}}_{66} }},\,\Delta = {\mathbb{R}}_{22} {\mathbb{R}}_{11} - {\mathbb{R}}_{12}^{2} . $$

Appendix 2

$$ \begin{gathered} \mho_{1} = \left( {\eta_{11} \lambda_{m}^{4} \frac{1}{4} + \eta_{12} \delta_{n}^{4} \frac{1}{4} + \eta_{13} \lambda_{m}^{2} \delta_{n}^{2} \frac{1}{4}} \right)h - k_{1} \frac{1}{4} - k_{2} \left( {\lambda_{m}^{2} + \delta_{n}^{2} } \right)\frac{1}{4}, \hfill \\ \mho_{2} = \eta_{14} \lambda_{m}^{4} + \eta_{15} \delta_{n}^{4} + \eta_{16} \lambda_{m}^{2} \delta_{n}^{2} , \hfill \\ \mho_{3} = \left( {\frac{32}{9}\frac{{\lambda_{m}^{2} \delta_{n}^{2} }}{{mn\pi^{2} }} - \frac{8}{9}\frac{{\lambda_{m}^{2} \delta_{n}^{2} }}{{mn\pi^{2} }}} \right)\frac{{\aleph_{14}^{{}} \beta_{n}^{4} + \aleph_{23}^{{}} \alpha_{m}^{4} - \left( {2\aleph_{32}^{{}} - \aleph_{13}^{{}} - \aleph_{24}^{{}} } \right)\alpha_{m}^{2} \beta_{n}^{2} }}{{\aleph_{11}^{{}} \beta_{n}^{4} + \aleph_{22}^{{}} \alpha_{m}^{4} + \left( {\aleph_{12}^{{}} + \aleph_{12}^{{}} + \aleph_{31}^{{}} } \right)\alpha_{m}^{2} \beta_{n}^{2} }}, \hfill \\ \mho_{4} = \left( { - \eta_{11} \frac{{\lambda_{m}^{2} \delta_{n}^{2} }}{{\aleph_{22}^{{}} }} - \eta_{12} \frac{{\delta_{n}^{2} \lambda_{m}^{2} }}{{\aleph_{11}^{{}} }}} \right)\frac{2}{3}\frac{1}{{mn\pi^{2} }},\,\mho_{5} = \left( { - \frac{{\lambda_{m}^{4} }}{{64\aleph_{11}^{{}} }} - \frac{{\delta_{n}^{4} }}{{64\aleph_{22}^{{}} }}} \right). \hfill \\ \end{gathered} $$

Appendix 3

$$ \Delta_{1} = \aleph_{11}^{{}} \aleph_{22}^{{}} - \aleph_{12}^{2} , $$
$$ \begin{gathered} \kappa_{21} = \left[ {\left( {\frac{{\aleph_{11}^{{}} }}{{\Delta_{1} }}\aleph_{22}^{{}} - \frac{{\aleph_{12}^{{}} }}{{\Delta_{1} }}\aleph_{12}^{{}} } \right)\lambda_{m}^{{}} \frac{4}{{\delta_{n} ab}}} \right]h, \hfill \\ + \left[ {\left( {\frac{{\aleph_{12}^{{}} }}{{\Delta_{1} }}\aleph_{13}^{{}} - \frac{{\aleph_{11}^{{}} }}{{\Delta_{1} }}\aleph_{23}^{{}} } \right)\lambda_{m}^{{}} \frac{4}{{\delta_{n} ab}} + \left( {\frac{{\aleph_{12}^{{}} }}{{\Delta_{1} }}\aleph_{14}^{{}} - \frac{{\aleph_{11}^{{}} }}{{\Delta_{1} }}\aleph_{24}^{{}} } \right)\delta_{n}^{{}} \frac{4}{{\lambda_{m} ab}}} \right], \hfill \\ \kappa_{22} = \lambda_{m}^{2} \frac{{\aleph_{12}^{{}} }}{{8\Delta_{1} }} - \delta_{n}^{2} \frac{{\aleph_{11}^{{}} }}{{8\Delta_{1} }},\,\,\kappa_{23} = \frac{{\aleph_{12}^{{}} \aleph_{15}^{{}} \phi_{1} }}{{\left( {\aleph_{11}^{{}} \aleph_{22}^{{}} - \aleph_{12}^{2} } \right)}} - \frac{{\aleph_{11}^{{}} \aleph_{25}^{{}} \phi_{1} }}{{\left( {\aleph_{11}^{{}} \aleph_{22}^{{}} - \aleph_{12}^{2} } \right)}}. \hfill \\ \end{gathered} $$

Appendix 4

$$ \begin{gathered} \ell_{1} = - \frac{{4\mho_{1} }}{{h\lambda_{m}^{2} }},\ell_{2} = \frac{{\kappa_{23} \delta_{n}^{2} }}{{h\lambda_{m}^{2} }}\phi_{1} \Delta T - \frac{{4\mho_{2} }}{{h\lambda_{m}^{2} }},\ell_{3} = \frac{1}{{\lambda_{m}^{2} }}\left( {\kappa_{21} \delta_{n}^{2} - 4\mho_{3} } \right), \hfill \\ \ell_{4} = - \frac{{4\mho_{4} }}{{\lambda_{m}^{2} }},\ell_{5} = - \frac{{4h\mho_{5} }}{{\lambda_{m}^{2} }} + \frac{{\kappa_{22} h\delta_{n}^{2} }}{{\lambda_{m}^{2} }}. \hfill \\ \end{gathered} $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anh, V.M., Quan, T.Q., Dat, N.D. et al. Nonlinear static stability and optimal design of nanocomposite multilayer organic solar cells in thermal environment. Int J Mech Mater Des 19, 431–450 (2023). https://doi.org/10.1007/s10999-022-09636-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-022-09636-3

Keywords

Navigation