Skip to main content
Log in

Viscoelastically coupled size-dependent behaviour of imperfect extensible microbeams

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This paper aims at investigating the size-dependent nonlinear behaviour of a viscoelastic imperfect extensible microbeam taking into account both transverse and longitudinal displacements and inertia. The size-dependent potential energy is formulated in the framework of the modified couple stress theory. The works due to the viscous parts of the stress tensor and the deviatoric part of the couple stress tensor are obtained in terms of system parameters. The kinetic energy as well as the work of external dynamic loading is obtained as functions of the displacement field. Hamilton’s principle is employed in order to balance the work and energy terms which results in the coupled nonlinear equations of motion for the longitudinal and transverse directions. A high-dimensional weighted-residual technique is employed so as to discretise the coupled equations of longitudinal and transverse motions and hence the continuous system with infinite number of degrees of freedom is truncated into a reduced-order model with sufficient degrees of freedom for accurate results capable of capturing almost all modal interactions. This high-dimensional nonlinear coupled reduced-order model is solved for the fundamental coupled nonlinear resonant response via use of a continuation method as well as direct time integration for response characterisation with special consideration to the coupled effect of the viscousity, initial imperfection, and length-scale parameter on the system response in the longitudinal and transverse directions. It is shown that the deviation between the response of viscoelastic and elastic systems is substantial for fairly large excitation forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbasnejad, B., Rezazadeh, G.: Mechanical behavior of a FGM micro-beam subjected to a nonlinear electrostatic pressure. Int. J. Mech. Mater. Des. 8, 381–392 (2012)

    Article  Google Scholar 

  • Ahangar, S., Rezazadeh, G., Shabani, R., Ahmadi, G., Toloei, A.: On the stability of a microbeam conveying fluid considering modified couple stress theory. Int. J. Mech. Mater. Des. 7, 327–342 (2011)

    Article  Google Scholar 

  • Antonello, R., Oboe, R., Prandi, L., Biganzoli, F.: Automatic mode matching in MEMS vibrating gyroscopes using extremum-seeking control. IEEE Trans. Ind. Electron. 56, 3880–3891 (2009)

    Article  Google Scholar 

  • Asghari, M., Kahrobaiyan, M.H., Ahmadian, M.T.: A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48, 1749–1761 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Azizi, S., Ghazavi, M.R., Rezazadeh, G., Khadem, S.E.: Thermo-elastic damping in a functionally graded piezoelectric micro-resonator. Int. J. Mech. Mater. Des. 11, 357–369 (2014)

    Article  Google Scholar 

  • Bethe, K., Baumgarten, D., Frank, J.: Creep of sensor’s elastic elements: metals versus non-metals. Sens. Actuators, A 23, 844–849 (1990)

    Article  Google Scholar 

  • Chen, S.H., Feng, B.: Size effect in micro-scale cantilever beam bending. Acta Mech. 219, 291–307 (2011)

    Article  MATH  Google Scholar 

  • Chorsi, M.T., Azizi, S., Bakhtiari-Nejad, F.: Application of quadratic controller to control the pull-in instability of a micro-resonator. Int. J. Mech. Mater. Des. 11, 111–123 (2015)

    Article  Google Scholar 

  • Elwenspoek, M., Jansen, H.V.: Silicon Micromachining. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  • Farokhi, H., Ghayesh, M.: Nonlinear resonant response of imperfect extensible Timoshenko microbeams. Int. J. Mech. Mater. Des. 1–13 (2015a). doi:10.1007/s10999-015-9316-z

  • Farokhi, H., Ghayesh, M.: Size-dependent behaviour of electrically actuated microcantilever-based MEMS. Int. J. Mech. Mater. Desi. 12, 301–315 (2015b)

    Article  Google Scholar 

  • Farokhi, H., Ghayesh, M.H.: Size-dependent behaviour of electrically actuated microcantilever-based MEMS. Int. J. Mech. Mater. Des. (2015c)

  • Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W.: Mechanism-based strain gradient plasticity— I. Theory. J. Mech. Phys. Solids 47, 1239–1263 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Ghayesh, M.H., Farokhi, H., Amabili, M.: In-plane and out-of-plane motion characteristics of microbeams with modal interactions. Compos. B Eng. 60, 423–439 (2014)

    Article  Google Scholar 

  • Haque, M.A., Saif, M.T.A.: Strain gradient effect in nanoscale thin films. Acta Mater. 51, 3053–3061 (2003)

    Article  Google Scholar 

  • Koutsawa, Y., Haberman, M.R., Daya, E.M., Cherkaoui, M.: Multiscale design of a rectangular sandwich plate with viscoelastic core and supported at extents by viscoelastic materials. Int. J. Mech. Mater. Des. 5, 29–44 (2009)

    Article  Google Scholar 

  • Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  • Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060 (2005)

    Article  Google Scholar 

  • Mohamed, K.T., Ata, A.A., El-Souhily, B.M.: Dynamic analysis algorithm for a micro-robot for surgical applications. Int. J. Mech. Mater. Des. 7, 17–28 (2011)

    Article  Google Scholar 

  • Esfahani, A. M., Bahrami, M.: Vibration analysis of a circular thin polymeric piezoelectric diaphragm with fluid interaction. Int. J. Mech. Mater. Des. 12, 401–411 (2016)

    Article  Google Scholar 

  • Nateghi, A., Salamat-talab, M., Rezapour, J., Daneshian, B.: Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory. Appl. Math. Model. 36, 4971–4987 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Ramezani, S.: A micro scale geometrically non-linear Timoshenko beam model based on strain gradient elasticity theory. Int. J. Non-Linear Mech. 47, 863–873 (2012)

    Article  Google Scholar 

  • Salamat-talab, M., Nateghi, A., Torabi, J.: Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory. Int. J. Mech. Sci. 57, 63–73 (2012)

    Article  Google Scholar 

  • Teh, K.S., Lin, L.: Time-dependent buckling phenomena of polysilicon micro beams. Microelectron. J. 30, 1169–1172 (1999)

    Article  Google Scholar 

  • Tuck, K., Jungen, A., Geisberger, A., Ellis, M., Skidmore, G.: A study of creep in polysilicon MEMS devices. J. Eng. Mater. Technol. 127, 90–96 (2005)

    Article  Google Scholar 

  • Wang, B., Zhao, J., Zhou, S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A. Solids 29, 591–599 (2010)

    Article  Google Scholar 

  • Zhang, J., Fu, Y.: Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory. Meccanica 47, 1649–1658 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, W.M., Meng, G.: Nonlinear dynamic analysis of electrostatically actuated resonant MEMS sensors under parametric excitation. IEEE Sens. J. 7, 370–380 (2007)

    Article  Google Scholar 

  • Zhang, D., Gao, Z., Fassi, I.: Design optimization of a spatial hybrid mechanism for micromanipulation. Int. J. Mech. Mater. Des. 7, 55–70 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support to this research by the start-up grant of the University of Adelaide is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mergen H. Ghayesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghayesh, M.H., Farokhi, H. Viscoelastically coupled size-dependent behaviour of imperfect extensible microbeams. Int J Mech Mater Des 13, 569–581 (2017). https://doi.org/10.1007/s10999-016-9356-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-016-9356-z

Keywords

Navigation