Skip to main content
Log in

On the stability of a microbeam conveying fluid considering modified couple stress theory

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this paper, the size-dependent vibrational behavior of a microbeam conveying fluid was investigated using the Modified Couple Stress Theory. For cantilever and clamped-clamped microbeams, the small amplitude vibration equation of the micro-beams was solved using a Galerkin based reduced order model and the effects of material length-scale parameter on its natural frequencies were evaluated. It was found that for the both cantilever and clamped-clamped conditions, the critical fluid velocities predicted by the modified couple stress theory are higher than those predicted by the classical beam theory. In addition, the differences between the eigen-frequencies and the critical fluid velocities predicted by the modified couple stress theory and classical beam theory depends on the ratio of the material length-scale parameter to the beam height. In addition an unexpected result in the difference between the first eigen-frequency of the cantilever micro-beam obtained by the classical and the modified couple stress theory has been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ahmadi, G.: Theory of nonlocal viscoelasticity. Int. J. Non-Linear Mech. 10, 253–258 (1975)

    Article  MATH  Google Scholar 

  • Ahmadi, G.: Thermoelastic stability of first strain gradient solids. Int. J. Non-Linear Mech. 12, 23–32 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Ahmadi, G., Farshad, M.: Theory of nonlocal plates. Lett. Appl. Eng. Sci. 1, 529–541 (1973)

    Google Scholar 

  • Ahmadi, G., Satter, M.A.: Stability of a pipe carrying time–dependent flowing fluid. J. Frankl. Inst. 305, 1–9 (1978)

    Article  MATH  Google Scholar 

  • Amabili, M., Pellicano, F., Paidoussis, M.P.: Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid, part iv: large-amplitude vibrations with flow. J. Sound Vibr. 237, 641–666 (2000)

    Article  Google Scholar 

  • Anthoine, A.: Effect of couple-stresses on the elastic bending of beams. Int. J. Solids Struct. 37, 1003–1018 (2000)

    Article  MATH  Google Scholar 

  • Ara′ujo dos Santosa, J.V., Reddy, J.N.: Vibration of Timoshenko beams using non-classical elasticity theories. Shock Vibr. 18, 1–6 (2011)

    Google Scholar 

  • Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H., Rahaeifard, M.: On the size-dependent behavior of functionally graded micro-beams. Mater. Des. 31, 2324–2329 (2010)

    Article  Google Scholar 

  • Chowdhury, S., Ahmadi, M., Miller, W.C.: A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams. J. Micromech. Microeng. 15, 756–763 (2005)

    Article  Google Scholar 

  • Cosserat, E., Cosserat, F.: Theorie des corps deformables. Hermann et Fils, Paris (1909)

    Google Scholar 

  • De Boer, M.P., Luck, D.L., Ashurst, W.R., Maboudian, R., Corwin, A.D., Walraven, J.A., Redmond, J.M.: High performance surface-micromachined inchworm actuator. J. Microelectromech. Syst. 13, 63–74 (2004)

    Article  Google Scholar 

  • De Langre, E., Paidoussis, M.P., Doare, O., Modarres Sadeghi, Y.: Flutter of long flexible cylinders in axial flow. J. Fluid Mech. 571, 371–389 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Doared, O., De Langre, E.: Local and global instability of fluid-conveying pipes on elastic foundations. J. Fluids Struct. 16, 1–14 (2002)

    Article  Google Scholar 

  • Eringen, A.C.: Theory of micro-polar elasticity. In: Fracture vol. 1. (1968), pp. 621–729

  • Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(1983), 4703–4710 (1983)

    Article  Google Scholar 

  • Fleck, N.A., Hutchinson, J.W.: A phenomenological theory for strain gradient affects in plasticity. J. Mech. Phys. Solids 41, 1825–1857 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Fleck, N.A., Muller, G.M., Ashby, M.F.: Stain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  • Giannakopoulos, A.E., Stamoulis, K.: Structural analysis of gradient elastic components. Int. J. Solids Struct. 44, 3440–3451 (2007)

    Article  MATH  Google Scholar 

  • Jin, J.D., Song, Z.Y.: Parametric resonances of supported pipes conveying pulsating fluid. J. Fluids Struct. 20, 763–783 (2005)

    Article  Google Scholar 

  • Ke, L.L., Wang Y.S., Yang, J., Kitipornchai, S.: Nonlinear free vibration of size-dependent functionally graded microbeams. Int. J. Eng. Sci. (2011). doi:10.1016/j.ijengsci.2010.12.008

  • Ke, L.L., Wang, Y.S.: Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos. Struct. 93(2), 342–350 (2001)

    Article  Google Scholar 

  • Koiter, W.T.: Couple stresses in the theory of elasticity, I and II. Proc. K. Ned. Akad. Wet. (B) 67(1), 17–44 (1964)

    MATH  Google Scholar 

  • Kuang, J.-H., Chen, C.-J.: Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method. J. Micromech. Microeng. 14, 647–655 (2004)

    Article  Google Scholar 

  • Kuiper, G.L., Metrikine, A.V.: On stability of a clamped- pinned pipe conveying fluid. Heron 49, 211–231 (2004)

    Google Scholar 

  • Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  • Lazopoulos, K.A., Lazopoulos, A.K.: Bending and buckling of thin strain gradient elastic beams. Eur. J. Mech. A/Solids 29, 837–843 (2010)

    Article  Google Scholar 

  • Lee, S.I., Chung, J.: New non-linear modeling for vibration analysis of a straight pipe conveying fluid. J. Sound Vib. 254, 313–325 (2002)

    Article  MathSciNet  Google Scholar 

  • Lin, Y.-H., Chu, C.-L.: Active modal control of Timoshinko pipes conveying fluid. J. Chin. Inst. Eng. 24, 65–74 (2001)

    Article  Google Scholar 

  • Manabe, T., Tosaka, N., Honama, T.: Dynamic Stability Analysis of Flow-Conveying Pipe With Two Lumped Masses by Domain Decomposition Beam. Fuji Research Institute Corp, Tokyo (1999)

    Google Scholar 

  • Maranganti, R., Sharma, P.: A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir) relevance for nanotechnologies. J. Mech. Phys. Solids 55, 1823–1852 (2007)

    Article  MATH  Google Scholar 

  • McDonald, R.J., Namachchivaya, Sri, N.: Pipes conveying pulsating fluid near a 0:1 resonance: Local bifurcations. J. Fluids Struct. 21, 629–664 (2005)

    Google Scholar 

  • Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • Mindlin, R.D.: Stress functions for a Cosserat continuum. Int. J. Solids Struct. 1, 265–271 (1965)

    Article  Google Scholar 

  • Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • Molotnikov, A., Lapovok, R., Davies, C.H.J., Cao, W., Estrin, Y.: Size effect on the tensile strength of fine-grained copper. Scr. Mater. 59(11), 1182–1185 (2008)

    Article  Google Scholar 

  • Nawaf, M.B.-R., Romero, L. A., Salinger, A. G.: Numerical Stability Analysis of a Tubular Cantilevered Conveying Fluid. California Institute of Technology (2002)

  • Nikolic, M., Rajkovic, M.: Bifurcations in nonlinear models of fluid-conveying pipes supported at both ends. J. Fluids Struct. 22, 173–195 (2006)

    Article  Google Scholar 

  • Paidoussis, M.P.: Fluid–Structure Interactions: Slender Structures and Axial Flow. Academic Press, London (1998)

    Google Scholar 

  • Paidoussis, M.P., Li, G.X.: Pipes conveying fluid: a model dynamical problem. J. Fluids Struct. 7, 137–204 (1993)

    Article  Google Scholar 

  • Paidoussis, M.P., Moon, F.C.: Nonlinear and chaotic fluid elastic vibrations of a flexible pipe conveying fluid. J. Fluids Struct. 2, 567–591 (1988)

    Article  Google Scholar 

  • Paidoussis, M.P., Luu, T.P., Prabhakar, S.: Dynamics of a long tubular cantilever conveying fluid downwards, which then flows upwards around the cantilever as a confined annular flow. J. Fluids Struct. 24, 111–128 (2007)

    Article  Google Scholar 

  • Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D., Beskos, D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct. 40, 385–400 (2003)

    Article  MATH  Google Scholar 

  • Park, S.K., Gao, X.L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

  • Park, S.K., Gao, X.L.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. J. Appl. Math. Phys. 59, 904–917 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Qian, Q., Wang, L., Ni, Q.: Instability of simply supported pipes conveying fluid under thermal loads. Department of Mechanics. Mech. Res. Commun. 36, 413–417 (2009)

    Article  Google Scholar 

  • Rao, S.: Vibration of Continuous Systems. Wiley, Hoboken (2007)

    Google Scholar 

  • Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  MATH  Google Scholar 

  • Reddy, J.N., Wang, C.M.: Dynamics of Fluid-Conveying Beams. Centre of offshore research and engineering, National University of Singapore, Singapore (2004)

    Google Scholar 

  • Rezazadeh, G., Fathalilou, M., Shabani, R.: Static and dynamic stabilities of a microbeam actuated by a piezoelectric voltage. J. Microsys. Technol. 15, 1785–1791 (2009)

    Article  Google Scholar 

  • Stlken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46(14), 5109–5115 (1998)

    Article  Google Scholar 

  • Toupin, R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • Vardoulakis, I., Sulem, J.: Bifurcation Analysis in Geomechanics. Blackie/Chapman & Hall, London (1995)

    Google Scholar 

  • Wang, L.: Vibration and instability analysis of tubular nano- and micro-beams conveying fluid using nonlocal elastic theory. Physica E 41, 1835–1840 (2009)

    Article  Google Scholar 

  • Wang, L.: Size-dependent vibration characteristics of fluid-conveying microtubes. J. Fluids Struct. 26, 675–684 (2010)

    Article  Google Scholar 

  • Xie, W.C., Lee, H.P., Lim, S.P.: Nonlinear dynamic analysis of MEMS switches by nonlinear modal analysis. Non-linear Dyn. 31, 243–256 (2003)

    Article  MATH  Google Scholar 

  • Yang, J.F.C., Lakes, R.S.: Experimental study of micropolar and couple stress elasticity in compact bone in bending. J. Biomech. 15, 91–98 (1982)

    Article  Google Scholar 

  • Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39b(10), 2731–2743 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghader Rezazadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahangar, S., Rezazadeh, G., Shabani, R. et al. On the stability of a microbeam conveying fluid considering modified couple stress theory. Int J Mech Mater Des 7, 327–342 (2011). https://doi.org/10.1007/s10999-011-9171-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-011-9171-5

Keywords

Navigation