Skip to main content

Advertisement

Log in

Design optimization of a spatial hybrid mechanism for micromanipulation

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Traditional parallel manipulators suffer from errors due to backlash, hysteresis, and vibration in the mechanical joints. The hybrid mechanism is built through the reconfiguration of parallel-serial structure. In this paper, a new 3SPS + RPR spatial hybrid mechanism which has three degrees of freedom (DOF) and can generate motions in a microscopic scale is proposed. As a reliable compliant hybrid mechanism which provides micro/nano scale micromotion with high accuracy, it can be utilized for biomedical engineering and fiber optics industry. The detailed design of the structure is first introduced, followed by the kinematic analysis and performance evaluation. Based on the kinetostatic model, the joint and link compliances of the passive constraining leg are investigated. Second, a finite-element analysis of resultant stress, strain, and deformations is evaluated based upon different inputs of the three piezoelectric actuators. Finally, the genetic algorithms and radial basis function networks are implemented to search for the optimal architecture and behavior parameters in terms of global stiffness/compliance, dexterity and manipulability. The proposed analysis and optimization methodology is intuitive and effective that offers a constructive way for design optimization of the family of parallel/hybrid manipulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Bamberger, H., Shoham, M.: A novel six degrees-of-freedom parallel robot for MEMS fabrication. IEEE Trans. Robot. 23, 189–195 (2007)

    Article  Google Scholar 

  • Chablat, D., Angeles, J.: On the kinetostatic optimization of revolute-coupled planar manipulators. Mech. Mach. Theory 37, 351–374 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Cheng, H., Yiu, Y., Li, Z.X.: Dynamics and control of redundantly actuated parallel manipulators. IEEE/ASME Trans. Mechatron. 8, 483–491 (2003)

    Article  Google Scholar 

  • Coello, C.A., Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (2002)

    MATH  Google Scholar 

  • Dong, W., Sun, L.N., Du, Z.J.: Design of a precision compliant parallel positioner driven by dual piezoelectric actuators. Sens. Actuator A: Phys. 135, 250–256 (2007)

    Article  Google Scholar 

  • Fang, S.Q., Franitza, D., Torlo, M., Bekes, F., Hiller, M.: Motion control of a tendon-based parallel manipulator using optimal tension distribution. IEEE/ASME Trans. Mechatron. 9(9), 561–568 (2004)

    Article  Google Scholar 

  • Fieldsend, J.E., Singh, S.: Pareto evolutionary neural networks. IEEE Trans Neural Netw. 16, 338–354 (2005)

    Article  Google Scholar 

  • Gao, Z., Zhang, D., Hu, X., Ge, Y.: Design, analysis and stiffness optimization of a three-degree-of-freedom parallel manipulator. Robotica 28, 349–357 (2010)

    Article  Google Scholar 

  • Golbabai, A., Seifollahi, S.: Radial basis function networks in the numerical solution of linear integro-differential equations. Appl. Math. Comput. 188, 427–432 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Gosselin, C.M., Guillot, M.: The synthesis of manipulators with prescribed workspace. J Mech Des. 113, 451–455 (1991)

    Article  Google Scholar 

  • Gosselin, C.M., Zhang, D.: Stiffness analysis of parallel mechanisms using a lumped model. Int. J. Robot. Autom. 17, 17–27 (2002)

    Google Scholar 

  • Hafez, M., Lichter, M.D., Dubowsky, S.: Optimized binary modular reconfigurable robotic devices. IEEE/ASME Trans. Mechatron. 8, 18–25 (2003)

    Article  Google Scholar 

  • Holland, J.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, MI (1975)

    Google Scholar 

  • Kang, B., Wen, J., Dagalakis, N., Goman, J.: Analysis and design of parallel mechanisms with flexure joints. In: Proceeding of the 2004 IEEE International Conference on Robot and Automation. New Orleans, LA, USA, 2004

  • Liu, X., Kim, J.: A new spatial three-dof parallel manipulator with high rotational capability. IEEE/ASME Trans. Mechatron. 10, 502–512 (2005)

    Article  MathSciNet  Google Scholar 

  • Mitchell, J.H., Jacob, R., Mika, N.: Optimization of a spherical mechanism for a minimally invasive surgical robot: theoretical and experimental approaches. IEEE Trans. Bio-Med. Eng. 53(7), 1440–1445 (2006)

    Article  Google Scholar 

  • Molinari-Tosatti, L., Fassi, I., Legnani, G.: Kineto-static optimisation of PKMs. Ann CIRP. 52(1), 337−342 (2003)

    Article  Google Scholar 

  • Moon, Y.M.: Bio-mimetic design of finger mechanism with contact aided compliant mechanism. Mech. Mach. Theory 42, 600–611 (2007)

    Article  MATH  Google Scholar 

  • Oetomo, D., Daney, D., Shirinzadeh, B., Merlet, J.-P.: Certified workspace analysis of 3RRR planar parallel flexure mechanism. In: Proceeding of the 2008 IEEE International Conference on Robotics and Automation. Pasadena, CA, USA (2008)

  • Ottaviano, E., Ceccarelli, M.: Application of a 3-DOF parallel manipulator for earthquake simulations. IEEE/ASME Trans. Mechatron. 11, 241–246 (2006)

    Article  Google Scholar 

  • Rao, A., Rao, P., Saha, S.: Dimensional design of hexaslides for optimal workspace and dexterity. IEEE Trans. Robot. 21, 444–449 (2005)

    Article  Google Scholar 

  • Rout, B.K., Mittal, R.K.: Parametric design optimization of 2-DOF R-R planar manipulator: A design of experiment approach. Robot. Comput.-Integr. Manuf. 24, 239–248 (2008)

    Article  Google Scholar 

  • Sitti, M.: Piezoelectrically actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax. IEEE/ASME Trans. Mechatron. 8, 26–36 (2003)

    Article  Google Scholar 

  • Sollmann, K.S., Jouaneh, M., Lavender, D.: Dynamic modeling of a two-axis, parallel, h-frame-type XY positioning system. IEEE/ASME Trans. Mechatron. 15, 280–290 (2010)

    Article  Google Scholar 

  • Stewart, D.: A platform with six degrees of freedom. Proc. Instn. Mech. Engrs. 80(15), 371–386 (1965–1966)

    Google Scholar 

  • Stock, M., Miller, K.: Optimal kinematic design of spatial parallel manipulators: application to linear delta robot. J. Mech. Des. 125, 292–301 (2003)

    Article  Google Scholar 

  • Tadokoro, S., Murao, Y., Hiller, M., Murata, R., Kohkawa, H., Matsushima, T.: A motion base with 6-dof by parallel cable drive architecture. IEEE/ASME Trans. Mechatron. 7(2), 115–123 (2002)

    Article  Google Scholar 

  • Takasaki, S., Kawamura, Y.: Using radial basis function networks and significance testing to select effective siRNA sequences. Comput. Stat. Data Anal. 51, 6476–6487 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Ukidve, C.S., McInroy, J.E., Jafari, F.: Using redundancy to optimize manipulability of Stewart platforms. IEEE/ASME Trans. Mechatron. 13(4), 475–479 (2008)

    Article  Google Scholar 

  • Varziri, M., Notash, L.: Kinematic calibration of a wire-actuated parallel robot. Mech. Mach. Theory 42, 960–976 (2007)

    Article  MATH  Google Scholar 

  • Venanzi, S., Giesen, P., Parenti-Castelli, V.: A novel technique for position analysis of planar compliant mechanisms. Mech. Mach. Theory 40, 1224–1239 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, L.P., Wu, J., Wang, J.S., You, Z.: An experimental study of a redundantly actuated parallel manipulator for a 5-DOF hybrid machine tool. IEEE/ASME Trans. Mechatron. 14, 72–81 (2009)

    Article  Google Scholar 

  • Yao, R., Tang, X., Wang, J., Huang, P.: Dimensional optimization design of the four-cable-driven parallel manipulator in FAST. IEEE/ASME Trans. Mechatron. 1–10 (2010)

  • Yoon, J., Ryu, J.: Design, fabrication, and evaluation of a new haptic device using a parallel mechanism. IEEE/ASME Trans. Mechatron. 6(3), 221–233 (2001)

    Article  Google Scholar 

  • Zhang, D.: Kinetostatics analysis and optimization of parallel and hybrid architectures for machine tools. Doctoral dissertation, Laval University, April (2000)

  • Zhang, D., Gosselin, C.M.: Kinetostatic modeling of parallel mechanisms with a passive constraining leg and revolute actuators. Mech. Mach. Theory 37, 599–617 (2002)

    Article  MATH  Google Scholar 

  • Zhu, X., Tao, G., Yao, B., Cao, J.: Adaptive robust posture control of parallel manipulator driven by pneumatic muscles with redundancy. IEEE/ASME Trans. Mechatron. 13, 441–450 (2008)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the help of Ms. Kayla Viegas in the preparation of the CAD model and finite element analysis. The corresponding author gratefully acknowledges the financial support from Canada Research Chairs program. The authors also acknowledge the financial support of the Italian National Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Gao, Z. & Fassi, I. Design optimization of a spatial hybrid mechanism for micromanipulation. Int J Mech Mater Des 7, 55–70 (2011). https://doi.org/10.1007/s10999-011-9149-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-011-9149-3

Keywords

Navigation