Skip to main content
Log in

X-FEM simulation for two-unequal-collinear cracks in 2-D finite piezoelectric specimen

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

A study for two-unequal-collinear cracks in a 2-D finite piezoelectric specimen is carried out using a new set of six crack-tip enrichment functions proposed here for piezoelectric media in the X-FEM framework. The intensity factors and energy release rate are calculated using interaction integral in conjugation with the near tip behavior given by the Stroh formalism. Effect of finite size of the specimen is analyzed with respect to offset distances of the cracks from the specimen boundaries. ERR variations are investigated with respect to inter- crack space, crack lengths and electrical/mechanical loadings. Hence, two-unequal-collinear cracks in an infinite domain problem is simulated, analyzed and validated using X-FEM. Further, ERR at the crack tips for the asymmetric case of two collinear equal and unequal cracks, is also computed. It is concluded through this investigation that the proposed enrichment functions could be used to handle the problems of fracture mechanics in 2-D piezoelectric media within a good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Abendroth, M., Groh, U., Kuna, M., Ricoeur, A.: Finite element-computation of the electromechanical J-Integral for 2-D and 3-D crack analysis. Int. J. Fract. 114, 359–378 (2002)

    Article  Google Scholar 

  • Allik, H., Hughes, T.J.R.: Finite element method for piezoelectric vibration. Int. J. Numer. Methods Eng. 2, 151–157 (1970)

    Article  Google Scholar 

  • Asadpoure, A., Mohammadi, S.: Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method. Int. J. Numer. Methods Eng. 69, 2150–2172 (2007)

    Article  MATH  Google Scholar 

  • Béchet, E., Scherzer, M., Kuna, M.: Application of the X-FEM to the fracture of piezoelectric materials. Int. J. Numer. Methods Eng. 77, 1535–1565 (2009)

    Article  MATH  Google Scholar 

  • Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko, T., Gracie, R., Ventura, G.: A review of extended/generalized finite element methods for material modeling. Model. Simul. Mater. Sci. 17, 043001 (2009)

    Article  Google Scholar 

  • Cherepanov, G.P.: Invariant G-integrals and some of their applications in mechanics. J. Appl. Math. Mech. 41, 397–410 (1977)

    Article  MathSciNet  Google Scholar 

  • Fries, T.P., Belytschko, T.: The generalized/extended finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84, 253–304 (2010)

    MathSciNet  MATH  Google Scholar 

  • Kumar, S., Singh, R.N.: Crack propagation in piezoelectric materials under combined mechanical and electrical load. Acta Mater. 44, 173–200 (1996)

    Article  Google Scholar 

  • Kumar, S., Singh, R.N.: Energy release rate and crack propagation in piezoelectric materials. Part II, combined mechanical and electrical loads. Acta Mater. 45, 849–868 (1997)

    Article  Google Scholar 

  • Kuna, M.: Finite element analyses of cracks in piezoelectric structures: a survey. Arch. Appl. Mech. 76, 725–745 (2006)

    Article  MATH  Google Scholar 

  • Kuna, M.: Fracture mechanics of piezoelectric materials-Where are we right now? Eng. Fract. Mech. 77, 309–326 (2010)

    Article  Google Scholar 

  • Li, Y.-D., Lee, K.Y.: Two collinear unequal cracks in a poled piezoelectric plane: mode I case solved by a new approach of real fundamental solutions. Int. J. Fract. 165, 47–60 (2010a)

    Article  Google Scholar 

  • Li, Y.-D., Lee, K.Y.: Collinear unequal crack series in magnetoelectroelastic materials: mode I case solved via new real fundamental solutions. Eng. Fract. Mech. 77, 2772–2790 (2010b)

    Article  Google Scholar 

  • Li, X.-F., Zhong, X.-C.: Closed form solution for two collinear cracks in a piezoelectric strip. Mech. Res. Commun. 32, 401–410 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)

    Article  MATH  Google Scholar 

  • Mousavi, S.E., Grinspun, E., Sukumar, N.: Harmonic enrichment functions: a unified treatment of multiple, intersecting and branched cracks in the extended finite element method. Int. J. Numer. Methods Eng. 85, 1306–1322 (2011)

    MathSciNet  MATH  Google Scholar 

  • Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Rao, B.N., Kuna, M.: Interaction integrals for fracture analysis of functionally graded piezoelectric materials. Int. J. Solids Struct. 45, 5237–5257 (2008)

    Article  MATH  Google Scholar 

  • Ricoeur, A., Enderlein, M., Kuna, M.: Calculation of the J-integral for limited permeable cracks in piezoelectrics. Arch. Appl. Mech. 74, 536–549 (2005)

    Article  MATH  Google Scholar 

  • Sosa, H.: On the fracture mechanics of piezoelectric solids. Int. J. Solids Struct. 29, 2613–2622 (1992)

    Article  MATH  Google Scholar 

  • Stolarska, M., Chopp, D.L., Moës, N., Belytschko, T.: Modelling crack growth by level sets in the extended finite element method. Int. J. Numer. Methods Eng. 51, 943–960 (2001)

    Article  MATH  Google Scholar 

  • Ting, T.C.T.: Anisotropic Elasticity: Theory & Applications. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  • Xu, X.-L., Rajapakse, R.K.N.D.: Analytical solution for an arbitrary oriented void/crack and fracture of piezoceramics. Acta Mater. 47(6), 1735–1747 (1999)

    Article  Google Scholar 

  • Piefort, V. and Preumont, A.: Finite element modeling of piezoelectric structures. Active Structures Laboratory. ULB-CP 165/42 (2001)

  • Yan, Z., Jiang, L., Dryden, J.R.: The fracture behaviour of functionally graded piezoelectric materials containing collinear dielectric cracks. Proc. R. Soc. Lond. A. Mater. 465, 1779–1798 (2009)

    Article  MATH  Google Scholar 

  • Yazid, A., Abdelkader, N., Abdelmadjid, H.: A state-of-the-art review of the X-FEM for computational fracture mechanics. Appl. Math. Model. 33, 4269–4282 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, Z.-G., Wang, B.: Investigation of anti-plane shear behavior of two collinear cracks in a piezoelectric material strip by a new method. Mech. Res. Commun. 28, 289–295 (2001)

    Article  MATH  Google Scholar 

  • Zhou, Z.-G., Wu, L.-Z.: Basic solutions for two parallel mode-I cracks or four parallel mode-I cracks in the piezoelectric materials. Eng. Fract. Mech. 74, 1413–1435 (2007)

    Article  Google Scholar 

  • Zhou, Z.-G., Wu, L.-Z., Du, S.-Y.: Non-local theory solution of two mode-I collinear cracks in the piezoelectric materials. Mech. Adv. Mater. Struct. 14, 191–201 (2007a)

    Article  Google Scholar 

  • Zhou, Z.-G., Zhang, P.-W., Wu, L.-Z.: Two parallel limited-permeable mode-I cracks or four parallel limited-permeable mode-I cracks in the piezoelectric materials. Int. J. Solids Struct. 44, 4184–4205 (2007b)

    Article  MATH  Google Scholar 

  • Zhou, Z.-G., Wang, J.-Z., Wu, L.-Z.: Two collinear mode-I cracks in piezoelectric/piezomagnetic materials. Struct. Eng. Mech. 29, 55–75 (2008)

    Google Scholar 

Download references

Acknowledgment

The authors are grateful to Prof. R.D. Bhargava (Senior Professor and Head, Retd., Indian Institute of Technology Bombay, Mumbai, India) for the encouragement throughout the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Sharma.

Appendix 1

Appendix 1

Assuming the plain strain conditions, the constitutive equations can be written as

$$ \left\{\begin{array}{l} \varepsilon_{xx} \\ \varepsilon_{yy}\\ 2 \varepsilon_{xy} \end{array} \right\} = \left[\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21}& a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right]\left\{\begin{array}{l} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy}\\ \end{array} \right\} + \left[\begin{array}{ll} b_{11} & b_{21}\\ b_{12} & b_{22} \\ b_{13} & b_{23} \end{array}\right] \left\{ \begin{array}{l} D_{x} \\ D_{y} \\ \end{array} \right\}$$
(45)
$$ \left\{\begin{array}{l} E_{x} \\ E_{y} \end{array} \right\} = - \left[\begin{array}{lll} b_{11} &b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{array} \right]\left\{\begin{array}{ll} \sigma_{xx}\\ \sigma_{yy} \\ \sigma_{xy} \end{array} \right\} + \left[\begin{array}{ll} d_{11} &d_{12} \\ d_{12} & d_{22} \end{array} \right]\left\{\begin{array}{l} D_{x} \\ D_{y} \end{array}\right\} $$
(46)

where coefficients \( a_{ij},\,b_{ij} \,{\text{and}}\,d_{ij} \) are reduced elastic, piezoelectric and dielectric constants, respectively defined by Sosa (1992).

Now using extended Lekhnitskii’s formalism to piezoelectric solids, the following potential function representation is introduced

$$ \begin{aligned} \sigma_{xx} & = \frac{{\partial^{2}F}}{{\partial y^{2} }};\;\sigma_{yy} = \frac{{\partial^{2}F}}{{\partial x^{2} }};\sigma_{xy} = - \frac{{\partial^{2}F}}{\partial x\partial y};\\ D_{x} & = \frac{\partial \psi}{\partial y};\;D_{y} = - \frac{\partial \psi }{\partial x}\\ \end{aligned} $$
(47)

where \( F\left( {x,y} \right)\,{\text{and}}\,\,\psi \left( {\text{x,y}} \right) \) are complex potential functions.

It can be shown that the equilibrium equations are automatically satisfied by Eq. 47. Using the strain and electric field compatibility equations, the following sixth order differential equation can be derived for \( F\left( {x,y} \right) \)

$$ D_{1} D_{2} D_{3} D_{4} D_{5} D_{6} F = 0 $$
(48)

where \( D_{n} = \left( {\frac{\partial }{\partial y} - a_{n} \frac{\partial }{\partial x}} \right),\,\,{\text{and}}\;a_{n} \left( {n = 1, \ldots,6} \right) \) are the roots of the characteristic equation

$$ P\left( {a_{t} } \right) = l_{1} \left( {a_{t} } \right)l_{3} \left( {a_{t} } \right) + l_{2}^{2} \left( {a_{t} } \right) = 0 $$
(49)

and

$$ \begin{aligned} l_{1} \left( {a_{t} } \right) & = d_{11} a_{t}^{2} - 2d_{12} a_{t} + d_{22} ; \hfill \\ l_{2} \left( {a_{t} } \right) & = b_{11} a_{t}^{3} - (b_{21} + b_{13} )a_{t}^{2} + \left( {b_{12} + b_{23} } \right)a_{t} - b_{22} ; \hfill \\ l_{3} \left( {a_{t} } \right) & = a_{11} a_{t}^{4} - 2a_{13} a_{t}^{3} + \left( {2a_{12} + a_{33} } \right)a_{t}^{2} - 2a_{23} a_{t} + a_{22} . \end{aligned} $$
(50)

The other complex variables defined in Sect. 4.3 are given below

$$ \begin{aligned} \delta_{n} & = \frac{{l_{2} \left( {a_{n} } \right)}}{{l_{1} \left( {a_{n} } \right)}}; \hfill \\ p_{n} & = a_{11} a_{n}^{2} + a_{12} - a_{13} a_{n} + \delta_{n} \left( {b_{11} a_{n} - b_{21} } \right); \hfill \\ q_{n} & = \left( {a_{12} a_{n}^{2} + a_{22} - a_{23} a_{n} + \delta_{n} b_{12} a_{n} - \delta_{n} b_{22} } \right)/a_{n}; \hfill \\ s_{n} & = b_{11} a_{n}^{2} + b_{12} - b_{13} a_{n} - \delta_{n} \left( {d_{11} a_{n} - d_{12} } \right); \hfill \\ t_{n} & = b_{21} a_{n}^{2} + b_{22} - b_{23} a_{n} - \delta_{n} \left( {d_{12} a_{n} - d_{22} } \right); \hfill \\ \end{aligned} $$
(51)
$$ \left[ {\Uplambda_{ij} } \right] = \frac{1}{\Updelta }\left[\begin{array} {lll}a_{2} \delta_{3} - a_{3} \delta_{2}& \delta_{2} - \delta_{3} & a_{3} - a_{2} \hfill \\ a_{3} \delta_{1} - a_{1} \delta_{3} & \delta_{3} - \delta_{1} & a_{1} -a_{3} \hfill \\ a_{1} \delta_{2} - a_{2} \delta_{1} & \delta_{1} - \delta_{2} & a_{2} - a_{1} \hfill \\ \end{array} \right], $$
(52)

where \( \Updelta = a_{1} \left( {\delta_{2} - \delta_{3} } \right) + a_{2} \left( {\delta_{3} - \delta_{1} } \right) + a_{3} \left( {\delta_{1} - \delta_{2} } \right) \) and a 1, a 2 and a 3 are the roots of the Eq. 49 with positive imaginary parts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhargava, R.R., Sharma, K. X-FEM simulation for two-unequal-collinear cracks in 2-D finite piezoelectric specimen. Int J Mech Mater Des 8, 129–148 (2012). https://doi.org/10.1007/s10999-012-9182-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-012-9182-x

Keywords

Navigation