Bianchi, F., Tagliabue, J., Yu, B., Bigon, L., & Greco, C. (2020). Fantastic embeddings and how to align them: Zero-shot inference in a multi-shop scenario. In: Proceedings of the SIGIR 2020 eCom Workshop. arXiv:2007.14906
Binbin Hu, Y.F., & Shi, C. (2019). Adversarial learning on heterogeneous information network. In: Proceedings of the 25th ACM SIGKDD conference on knowledge discovery and data mining, ACM.
Bordes, A., Usunier, N.., Garcia-Durán, A., Weston, J., & Yakhnenko, O. (2013). Translating embeddings for modeling multi-relational data. In: Proceedings of the 26th International Conference on Neural Information Processing Systems—Volume 2, Curran Associates Inc., Red Hook, NY, USA, NIPS’13, pp. 2787–2795.
Cao, S., Lu, W., & Xu, Q. (2015). GraRep: Learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management—CIKM ’15, ACM Press, Melbourne, Australia, pp. 891–900.
Cen, Y., Zou, X., Zhang, J., Yang, H., Zhou, J., & Tang, J. (2019). Representation learning for attributed multiplex heterogeneous network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining—KDD ’19, ACM Press, Anchorage, AK, USA, pp 1358–1368.
Chairatanakul, N., Murata, T., & Liu, X. (2019). Recurrent translation-based network for top-n sparse sequential recommendation. IEEE Access, 7, 131567–131576. https://doi.org/10.1109/ACCESS.2019.2941083
Article
Google Scholar
Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., & Sun, X. (2020). Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence, AAAI Press, New York, NY, USA, pp. 3438–3445.
Chen, H., Yin, H., Wang, W., Wang, H., Nguyen, Q.V.H., & Li, X. (2018). PME: Projected Metric Embedding on Heterogeneous Networks for Link Prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM Press, London, United Kingdom, pp. 1177–1186.
Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder–decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, Doha, Qatar, pp. 1724–1734.
Do, K., Tran, T., Nguyen, T., & Venkatesh, S. (2019). Attentional multilabel learning over graphs: A message passing approach. Machine Learning, 108(10), 1757–1781.
MathSciNet
Article
Google Scholar
Dong, Y., Chawla, N. V., & Swami, A. (2017). metapath2vec: Scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD ’17, ACM Press, Halifax, NS, Canada, pp. 135–144.
Feng, F., He, X., Tang, J., & Chua, T. S. (2019). Graph adversarial training: Dynamically regularizing based on graph structure. IEEE: IEEE Transactions on Knowledge and Data Engineering Publisher.
Google Scholar
Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds.
Ty, Fu., Lee, W. C., & Lei, Z. (2017). HIN2Vec: Explore meta-paths in heterogeneous information networks for representation learning. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management—CIKM ’17, ACM Press, Singapore, Singapore, pp. 1797–1806
Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78–94.
Article
Google Scholar
Grbovic, M., Radosavljevic, V., Djuric, N., Bhamidipati, N., Savla, J., Bhagwan, V., & Sharp, D. (2015). E-commerce in your inbox: Product recommendations at scale. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, New York, NY, USA, KDD ’15, pp. 1809–1818
Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD ’16, ACM Press, San Francisco, California, USA, pp. 855–864
Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Inductive representation learning on large graphs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, Curran Associates Inc., Red Hook, NY, USA, NIPS’17, pp. 1025–1035
Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P., Trischler, A., & Bengio, Y. (2018). Learning deep representations by mutual information estimation and maximization. In: ICLR’19.
Hu, B., Fang, Y., & Shi, C. (2019). Adversarial learning on heterogeneous information networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, New York, NY, USA, KDD ’19, pp. 120–129
Hu, Z., Dong, Y., Wang, K., Chang, K. W., & Sun, Y. (2020a). GPT-GNN: Generative pre-training of graph neural networks. In: Proceedings of the 26th ACM SIGKDD conference on knowledge discovery and data mining, ACM
Hu, Z., Dong, Y., Wang, K., & Sun, Y. (2020b). Heterogeneous graph transformer. In: Proceedings of The Web Conference 2020, ACM Press, New York, NY, USA, WWW ’20, pp. 2704–2710
Inokuchi, A., Washio, T., & Motoda, H. (2003). Complete mining of frequent patterns from graphs: Mining graph data. Machine Learning, 50(3), 321–354.
Article
Google Scholar
Jin, H., & Zhang, X. (2019). Latent adversarial training of graph convolution networks. In: ICML Workshop on Learning and Reasoning with Graph-Structured Representations
Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations
Kong, X., Yu, P. S., Ding, Y., & Wild, D. J. (2012). Meta path-based collective classification in heterogeneous information networks. In: Proceedings of the 21st ACM international conference on Information and knowledge management—CIKM ’12, ACM Press, Maui, Hawaii, USA, p 1567.
Lazaridou, A., Pham, N. T., & Baroni, M. (2015). Combining language and vision with a multimodal skip-gram model. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, Denver, Colorado, pp. 153–163
Lee, N., Ajanthan, T., & Torr, P.H. (2019a) Snip: Single-shot network pruning based on connection sensitivity. In: ICLR.
Lee, S., Park, C., & Yu, H. (2019b). BHIN2vec: Balancing the type of relation in heterogeneous information network. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, ACM Press, Beijing, China, CIKM ’19, pp. 619–628
Li, Q., Han, Z., & Wu, X.m. (2018). Deeper insights into graph convolutional networks for semi-supervised learning. In: AAAI-18, vol 32.
Liu, X., Yu, Y., Guo, C., & Sun, Y. (2014). Liu X, Yu Y, Guo C, Sun Y (2014) Meta-Path-Based Ranking with Pseudo Relevance Feedback on Heterogeneous Graph for Citation Recommendation. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management—CIKM ’14, ACM Press, Shanghai, China, pp. 121–130
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In: Advances in neural information processing systems, pp. 3111–3119.
Miller, H. J., & Han, J. (2001). Geographic data mining and knowledge discovery. USA: Taylor & Francis Inc.
Book
Google Scholar
Ng, A.Y., Jordan, M.I., & Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm. In: Advances in neural information processing systems, pp. 849–856.
Ni, J., Li, J., & McAuley, J. (2019). Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP), Association for Computational Linguistics, Hong Kong, China, pp. 188–197.
NT, H., & Maehara, T. (2019). Revisiting graph neural networks: All we have is low-pass filters. arXiv preprint arXiv:190509550
Oono, K., & Suzuki, T. (2019). Graph neural networks exponentially lose expressive power for node classification. In: ICLR.
Park, C., Kim, D., Han, J., & Yu, H. (2020). Unsupervised attributed multiplex network embedding. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence, AAAI Press, New York, NY, USA, pp. 5371–5378
Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining—KDD ’14, ACM Press, New York, NY, USA, pp. 701–710.
Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., & Tang, J. (2018). Network embedding as matrix factorization: unifying DeepWalk, LINE, PTE, and node2vec. In: Proceedings of the 11th ACM International Conference on Web Search and Data Mining—WSDM ’18, ACM Press, Los Angeles, California, USA, pp. 459–467
Ren, Y., Liu, B., Huang, C., Dai, P., Bo, L., & Zhang, J. (2019). Heterogeneous deep graph infomax. arXiv preprint arXiv:191108538
Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2009). BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, AUAI Press, Arlington, Virginia, USA, UAI ’09, pp 452–461
Ricci, F., Rokach, L., Shapira, B., & Kantor, P. B. (2010). Recommender Systems Handbook (1st ed.). New York Inc, New York: Springer-Verlag.
MATH
Google Scholar
Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov, I., & Welling, M. (2018). Modeling relational data with graph convolutional networks. In: European Semantic Web Conference, Springer, pp. 593–607.
Shi, C., Hu, B., Zhao, W., & Yu, P. S. (2019). Heterogeneous information network embedding for recommendation. IEEE Transactions on Knowledge and Data Engineering, 31(02), 357–370.
Article
Google Scholar
Shi, Y., Gui, H., Zhu, Q., Kaplan, L., & Han, J. (2018a). Aspem: Embedding learning by aspects in heterogeneous information networks. In: Proceedings of SIAM International Conference on Data Mining (SDM18), San Diego, California, USA, pp. 144–152
Shi, Y., Zhu, Q., Guo, F., Zhang, C., & Han, J. (2018b). Easing embedding learning by comprehensive transcription of heterogeneous information networks. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, London, United Kingdom, pp. 2190–2199.
Shrikumar, A., Greenside, P., & Kundaje, A. (2017). Learning important features through propagating activation differences. In: Proceedings of the 34th International Conference on Machine Learning—Volume 70, ICML’17, pp. 3145–3153.
Sun, Y., & Han, J. (2013). Mining heterogeneous information networks: A structural analysis approach. SIGKDD Explorations Newsletter, 14(2), 20–28.
Article
Google Scholar
Sun, Y., Han, J., Yan, X., Yu, P. S., & Wu, T. (2011). Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. Proceedings of the VLDB Endowment, 4(11), 992–1003.
Article
Google Scholar
Sun, Y., Norick, B., Han, J., Yan, X., Yu, P. S., & Yu, X. (2012). Integrating meta-path selection with user-guided object clustering in heterogeneous information networks. In: Explorations Newsletter Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining—KDD ’1212, ACM Press, Beijing, China, p. 1348.
Sun, Z., Deng, Z. H., Nie, J. Y., & Tang, J. (2019). RotatE: Knowledge graph embedding by relational rotation in complex space. In: International Conference on Learning Representations.
Tang, J., Qu, M., & Mei, Q. (2015a). PTE: Predictive text embedding through large-scale heterogeneous text networks. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, Sydney, NSW, Australia, KDD ’15, pp. 1165–1174.
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015b). LINE: Large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web—WWW ’15, ACM Press, Florence, Italy, pp. 1067–1077.
Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., & Bouchard, G. (2016). Complex embeddings for simple link prediction. International Conference on Machine Learning (ICML), 48, 2071–2080.
Google Scholar
Tsoumakas, G., & Katakis, I. (2007). Multi-label classification: An overview. International Journal of Data Warehousing and Mining (IJDWM), 3(3), 1–13.
Article
Google Scholar
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. In: International Conference on Learning Representations.
Veličković, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio, Y., & Hjelm, R. D. (2018). Deep graph infomax. In: ICLR’19.
Wang, D., Cui, P., & Zhu, W. (2016). Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD’16, ACM Press, San Francisco, California, USA, pp. 1225–1234.
Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., & Yu, P. S. (2019). Heterogeneous graph attention network. In: Proceedings of The Web Conference 2019, ACM Press, San Francisco, CA, USA, pp. 2022–2032.
Wang, Z., Zhang, J., Feng, J., & Chen, Z. (2014). Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence, AAAI Press, Québec City, Québec, Canada, AAAI’14, pp. 1112–1119.
Wu, W., Li, B., Chen, L., & Zhang, C. (2018). Efficient attributed network embedding via recursive randomized hashing. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, AAAI Press, IJCAI’18, pp. 2861–2867.
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P.S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:190100596
Xie, Y., Li, S., Yang, C., Wong, R. C. W., & Han, J. (2020). When do GNNs work: Understanding and improving neighborhood aggregation. In: Bessiere, C.(ed.) Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, pp. 1303–1309.
Xu, L., Wei, X., Cao, J., & Yu, P.S. (2017). Embedding of Embedding (EOE): Joint Embedding for Coupled Heterogeneous Networks. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining—WSDM ’17, ACM Press, Cambridge, United Kingdom, pp. 741–749.
Yang, B., Wt, Yih, He, X., Gao, J., & Deng, L. (2014). Embedding entities and relations for learning and inference in knowledge bases. In: International Conference on Learning Representations.
Yang, D., Rosso, P., Li, B., & Cudre-Mauroux, P. (2019). Nodesketch: Highly-efficient graph embeddings via recursive sketching. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, New York, NY, USA, KDD ’19, pp. 1162–1172, https://doi.org/10.1145/3292500.3330951
Yang, Z., Ding, M., Zhou, C., Yang, H., Zhou, J., & Tang, J. (2020). Understanding negative sampling in graph representation learning. In: KDD,’20, pp. 1666–1676.
Yun, S., Jeong, M., Kim, R., Kang, J., & Kim, H. J. (2019). Graph transformer networks. Advances in Neural Information Processing Systems, 32 (pp. 11983–11993). Vancouver, Canada: Curran Associates Inc.
Zhu Y, Xu Y, Cui H, Yang C, Liu Q, Wu S (2021) Structure-aware hard negative mining for heterogeneous graph contrastive learning. arXiv:210813886 [cs]