Skip to main content
Log in

Berry–Esseen bounds and Cramér-type large deviations for the volume distribution of Poisson cylinder processes

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

A stationary Poisson cylinder process Π cyl (d,k) is composed of a stationary Poisson process of k-flats in ℝd that are dilated by i.i.d. random compact cylinder bases taken from the corresponding orthogonal complement. We study the accuracy of normal approximation of the d-volume V ϱ (d,k) of the union set of Π cyl (d,k) that covers ϱW as the scaling factor ϱ becomes large. Here W is some fixed compact star-shaped set containing the origin as an inner point. We give lower and upper bounds of the variance of V ϱ (d,k) that exhibit long-range dependence within the union set of cylinders. Our main results are sharp estimates of the higher-order cumulants of V ϱ (d,k) under the assumption that the (dk)-volume of the typical cylinder base possesses a finite exponential moment. These estimates enable us to apply the celebrated “Lemma on large deviations” of Statulevičius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, Springer, New York, 1988.

    MATH  Google Scholar 

  2. J. Dieudonné, Grundzüge der Modernen Analysis, Bd. 3, Dt. Verlag der Wiss., Berlin, 1976.

    Google Scholar 

  3. L. Heinrich, On existence and mixing properties of germ-grain models, Statistics, 23:271–286, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Heinrich, Large deviations of the empirical volume fraction for stationary Poisson grain models, Ann. Appl. Probab., 15(1A):392–420, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  5. L. Heinrich, An almost-Markov-type mixing condition and large deviations for Boolean models on the line, Acta Appl. Math., 96:247–262, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Heinrich, Central limit theorems for motion-invariant Poisson hyperplanes in expanding convex bodies, Rend. Circ. Mat. Palermo, 2010 (forthcoming). See also Preprint Nr. 043/2007, Institut für Mathematik, Universität Augsburg.

  7. L. Heinrich, H. Schmidt, and V. Schmidt, Central limit theorems for Poisson hyperplane tessellations, Ann. Appl. Probab., 16:919–950, 2005.

    Article  MathSciNet  Google Scholar 

  8. L. Heinrich and M. Spiess, Asymptotic normality of the volume covered by Poisson cylinder processes in large domains, 2009 (in preparation).

  9. L.M. Hoffmann, Mixed measures of convex cylinders and quermass densities of Boolean models, Acta Appl. Math., 105:141–156, 2009.

    Article  MathSciNet  Google Scholar 

  10. V.P. Leonov, Some Applications of Higher Cumulants in Random Process Theory, Nauka, Moscow, 1964 (in Russian).

    Google Scholar 

  11. V.P. Leonov and A.N. Shiryaev, On a method of calculating semi-invariants, Theory Probab. Appl., 4:319–329, 1959.

    Article  MATH  Google Scholar 

  12. G. Matheron, Random Sets and Integral Geometry, Wiley & Sons, New York, 1975.

    MATH  Google Scholar 

  13. I. Molchanov, Theory of Random Sets, Springer, London, 2005.

    MATH  Google Scholar 

  14. D. Ruelle, Statistical Mechanics: Rigorous Results, 5nd edition, Addison–Wesley, Reading, MA, 1989.

    Google Scholar 

  15. L. Saulis and V. Statulevičius, Limit Theorems for Large Deviations, Kluwer Academic Press, Dordrecht, 1991.

    MATH  Google Scholar 

  16. R. Schneider and W. Weil, Stochastic and Integral Geometry, Springer, Berlin, 2008.

    MATH  Google Scholar 

  17. M. Spiess and E. Spodarev, Anisotropic Poisson processes of cylinders, 2009 (submitted for publication).

  18. V.A. Statulevičius, On large deviations, Z. Wahrscheinlichkeitstheor. Verw. Geb., 6:133–144, 1966.

    Article  MATH  Google Scholar 

  19. D. Stoyan, W.S. Kendall, and J. Mecke, Stochastic Geometry and Its Applications, 2nd edition, Wiley & Sons, Chichester, 1995.

    MATH  Google Scholar 

  20. W. Weil, Point processes of cylinders, particles and flats, Acta Appl. Math., 6:103–136, 1987.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Heinrich.

Additional information

Dedicated to the memory of Vytautas Statulevičius

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinrich, L., Spiess, M. Berry–Esseen bounds and Cramér-type large deviations for the volume distribution of Poisson cylinder processes. Lith Math J 49, 381–398 (2009). https://doi.org/10.1007/s10986-009-9061-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-009-9061-9

MSC

Keywords

Navigation