Skip to main content
Log in

The Almost Sure Invariance Principle for Beta-Mixing Measures

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The theorem of Shannon–McMillan–Breiman states that for every generating partition on an ergodic system of finite entropy the exponential decay rate of the measure of cylinder sets equals the metric entropy almost everywhere. In addition the measure of \(n\)-cylinders is in various settings known to be lognormally distributed in the limit. In this paper the logarithm of the measure of \(n\)-cylinder, the information function, satisfies the almost sure invariance principle in the case in which the measure is \(\beta \)-mixing. We get a similar result for the recurrence time. Previous results are due to Philipp and Stout who deduced the ASIP when the measure is strong mixing and satisfies an \(\fancyscript{L}^1\)-type Gibbs condition. We also prove the ASIP for the recurrence time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In [12] we used the term ‘uniform strong mixing’ for what is commonly called \(\beta \)-mixing. Here we adhere to the standard terminology.

References

  1. Abadi, M.: Exponential approximation for hitting times in mixing stochastic processes. Math. Phys. Electron. J. 7(2) (2001)

  2. Brin, M., Katok, A.: On local entropy; Geometric Dynamics, pp. 30–38, Springer LNM #1007 (1983)

  3. Broise, A: Transformations dilatantes de l’intervalle et théorèmes limites; Asterisque #238 (1996)

  4. Bruin, H., Vaienti, S: Return times for unimodal maps. Forum Math. 176, 77–94 (2003)

  5. Chernov, N.: Limit theorems and Markov approximations for chaotic dynamical systems. Prob. Th. Rel. Fields 101, 321–362 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Collet, P., Galves, A., Schmitt, B.: Fluctuations of repetition times for Gibbsian sources. Nonlinearity 12, 1225–1237 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Doukhan, P: Mixing: properties and examples. Lecture Notes in Statistics, vol. 85. Springer, Berlin (1995)

  8. Ferrero, P., Haydn, N., Vaienti, S.: Entropy fluctuations for parabolic maps. Nonlinearity 16, 1203–1218 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Galves, A., Schmitt, B.: Inequalities for hitting times in mixing dynamical systems. Random Comput. Dyn. 5, 337–348 (1997)

    MATH  MathSciNet  Google Scholar 

  10. Gordin, M.: The central limit theorem for stationary processes. Soviet Math. Doklady 10, 1174–1176 (1969)

    MATH  Google Scholar 

  11. Han, Guanyue: Limit theorems in hidden Markov models. IEEE Trans. Inf. Theory 59(3), 1311–1328 (2013)

    Article  ADS  Google Scholar 

  12. Haydn, N: The central limit theorem for uniformly strong mixing measures. Stoch. Dyn. (2012). doi:10.1142/S0219493712500062

  13. Haydn, N., Vaienti, S.: Fluctuations of the metric entropy for mixing measures. Stoch. Dyn. 4, 595–627 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Haydn, N., Vaienti, S: The distribution of the measure of cylinders for non-Gibbsian measures; Complex Dynamics and Related Topics 147–162, New Studies in Advanced Mathematics #5 (2003)

  15. Ibragimov, I.A.: Some limit theorems for stationary processes. Theory Prob. Appl. 7, 349–382 (1962)

    Article  Google Scholar 

  16. Kontoyiannis, I.: Asymptotic recurrence and waiting times for stationary processes. J. Theor. Prob. 11, 795–811 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Liverani, C.: Central Limit theorem for deterministic systems; Intern. Congress on Dyn. Syst., Montevideo. Proc. Research Notes in Math. Series. Pitman 1996, 56–75 (1996)

  18. Mañé, R.: Ergodic Theory and Differentiable Dynamics. Springer, Berlin (1987)

  19. Nobel, A., Wyner, A.: A recurrence theorem for dependent processes with applications to data compression. IEEE 38(5), 1561–1564 (1992)

    MATH  MathSciNet  Google Scholar 

  20. Ornstein and Weiss; Entropy and Data Compression Schemes. IEEE Trans. Inf. Theory 39, 78–83 (1993)

  21. Ornstein and Weiss; Entropy and Recurrence Rates for: Stationary Random Fields. IEEE Trans. Inf. Theory 48(6), 1694–1697 (2002)

  22. Paccaut, F.: Propriétés Statistiques de Systèmes Dynamiques Non Markovian; Thèse (Doctorat) Dijon 2000

  23. Pène, F.: Rates of convergence in the CLT for two-dimensional dispersive Billiards. Commun. Math. Phys. 225, 91–119 (2002)

    Article  ADS  MATH  Google Scholar 

  24. Petersen, K: Ergodic Theory: Cambridge studies in advanced mathematics #2 (1983)

  25. Philipp, W., Stout, W: Almost sure invariance principles for partial sums of weakly dependent random variables. AMS Mem. 2(2), 161 (1975)

  26. Romanovskii, V.I.: Discrete Markov Chains. Wolters-Noordhoff Publishing Groningen (1970)

  27. Rosenblatt, M.: A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci. USA 42, 43–47 (1956)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Rosenblatt, M: Markov Processes. Structure and Asymptotic Behavior. Springer, Grundlagen #184, (1971)

  29. Walters, P.: An Introduction to Ergodic Theory. Springer, Berlin (1981)

    Google Scholar 

  30. Wyner, A., Ziv, J.: Some asymptotic properties of the entropy of a stationary ergodic data source with applications to data compression. IEEE Trans. Inf. Theory 35, 1250–8 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yushkevich, A.: On limit theorems connected with the concept of the entropy of Markov chains (in Russian). Uspehi Math. Nauk 8, 177–180 (1953)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolai Haydn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haydn, N. The Almost Sure Invariance Principle for Beta-Mixing Measures. J Stat Phys 159, 231–254 (2015). https://doi.org/10.1007/s10955-014-1185-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1185-6

Keywords

Navigation