Skip to main content
Log in

An Almost-Markov-Type Mixing Condition and Large Deviations for Boolean Models on the Line

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We consider a not necessarily stationary one-dimensional Boolean model Ξ=∪ i≥1(Ξ i +X i ) defined by a Poisson process \(\Psi=\sum_{i\ge 1}\delta_{X_{i}}\) with bounded intensity function λ(t)≤λ 0 and a sequence of independent copies Ξ 1,Ξ 2,… of a random compact subset Ξ 0 of the real line ℝ1 whose diameter ‖Ξ 0‖ possesses a finite exponential moment \(\mathsf{E}\exp\{a\|\Xi_{0}\|\}\) . We first study the higher-order covariance functions \(\mathop{\mathsf{E}}\limits^{\frown}\xi(t_{1})\xi(t_{2})\cdots \xi(t_{k})\) of the {0,1}-valued stochastic process \(\xi(t)=\mathbf{1}_{\Xi^{c}(t)},\ t\in \mathbb{R}^{1}\) , and derive exponential estimates of them as well as of the mixed cumulants Cum k (ξ(t 1),ξ(t 2),…,ξ(t k )). From this, we derive Cramér-type large deviations relations and a Berry–Esseen bound for the distribution of empirical total length meas(Ξ∩[0,T]) of Ξ within [0,T] as T grows large. Second, we prove that the family of events {ξ(t)=1}={t Ξ}, t∈ℝ1, satisfies an almost-Markov-type mixing condition with an exponentially decaying mixing rate. In case of a stationary Boolean model, i.e. λ(t)≡λ 0, these properties enable us to show the existence and analyticity of the thermodynamic limit

$$L(z)=\lim_{T\to \infty}\frac{1}{T}\log \mathsf{E}\exp\bigl\{z\mathop{\mathrm{meas}}\bigl(\Xi\cap [0,T]\bigr)\bigr\}\quad \hbox{for}\ |z|<\varepsilon(a,\lambda_{0}).$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bingham, N.H., Dunham, B.: Estimating diffusion coefficients from count data: Einstein–Smoluchowski theory revisited. Ann. Inst. Stat. Math. 49, 667–679 (1997)

    Article  MATH  Google Scholar 

  2. Bingham, N.H., Pitts, S.M.: Non-parametric estimation for the M/G/∞ queue. Ann. Inst. Stat. Math. 51, 71–97 (1999)

    Article  MATH  Google Scholar 

  3. Götze, F., Heinrich, L., Hipp, C.: m-dependent random fields with analytic cumulant generating function. Scand. J. Stat. 22, 183–195 (1995)

    MATH  Google Scholar 

  4. Hall, P.: Introduction to the Theory of Coverage Processes. Wiley, New York (1988)

    MATH  Google Scholar 

  5. Heinrich, L.: A method for the derivation of limit theorems for sums of m-dependent random variables. Z. Wahrscheinlichkeitstheorie verw. Gebiete 60, 501–515 (1982)

    Article  MATH  Google Scholar 

  6. Heinrich, L.: A method for the derivation of limit theorems for sums of weakly dependent random variables: A survey. Optimization 18, 715–735 (1987)

    Article  MATH  Google Scholar 

  7. Heinrich, L.: Large deviations of the empirical volume fraction for stationary Poisson grain models. Ann. Appl. Probab. 15(1A), 392–420 (2005)

    Article  MATH  Google Scholar 

  8. Heinrich, L., Schmidt, V.: Normal convergence of multidimensional shot-noise and rates of this convergence. Adv. Appl. Probab. 17, 709–730 (1985)

    Article  MATH  Google Scholar 

  9. Heinrich, L., Werner, M.: Kernel estimation of the diameter distribution in Boolean models with spherical grains. J. Nonparam. Stat. 12, 147–176 (2000)

    Article  MATH  Google Scholar 

  10. Heinrich, L., Werner, M.: Strongly consistent estimation in Wicksell’s corpuscle problem in case of incompletely unobservable spheres in the intersection plane. Ann. Inst. Stat. Math. (2007, submitted)

  11. Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)

    MATH  Google Scholar 

  12. Riauba, B.: On the central limit theorem for sums of series of weakly dependent random variables. Liet. Mat. Rink. 2, 193–205 (1962) (in Russian)

    Google Scholar 

  13. Saulis, L., Statulevičius, V.: Limit Theorems for Large Deviations. Kluwer, Dordrecht (1991)

    MATH  Google Scholar 

  14. Shiryaev, A.N.: Some problems in spectral theory of higher order moments I. Theory Probab. Appl. 5, 265–284 (1960)

    Article  Google Scholar 

  15. Statulevičius, V.A.: On large deviations. Z. Wahrscheinlichkeitstheorie verw. Gebiete 6, 133–144 (1966)

    Article  Google Scholar 

  16. Statulevičius, V.A.: On limit theorems for random functions I. Liet. Mat. Rink. 10, 583–592 (1970) (in Russian)

    Google Scholar 

  17. Statulevičius, V.A.: Large-deviation theorems for sums of dependent random variables I. Lith. Math. J. 19, 289–296 (1979)

    Article  Google Scholar 

  18. Statulevičius, V.A.: On a condition of almost Markov regularity. Theory Probab. Appl. 28, 379–383 (1983)

    Google Scholar 

  19. Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications, 2nd edn. Wiley, Chichester (1995)

    MATH  Google Scholar 

  20. Žurbenko, I.G.: The Spectral Analysis of Time Series. North-Holland Series in Statistics and Probability, vol. 2. North-Holland, Amsterdam (1986)

    Google Scholar 

  21. Zuyev, N.M.: An estimate of mixed semiinvariants of random processes satisfying an almost Markov type mixing condition. Liet. Mat. Rink. 21, 81–85 (1981) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Heinrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinrich, L. An Almost-Markov-Type Mixing Condition and Large Deviations for Boolean Models on the Line. Acta Appl Math 96, 247–262 (2007). https://doi.org/10.1007/s10440-007-9105-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-007-9105-2

Keywords

Mathematics Subject Classification (2000)

Navigation