Skip to main content
Log in

Survey of classroom use of representations: development, field test and multilevel analysis

  • Original Paper
  • Published:
Learning Environments Research Aims and scope Submit manuscript

Abstract

Because of the multimodal nature of learning, doing and reporting science, it is important that students learn how to interpret, construct, relate and translate scientific representations or, in other words, to develop representational competence. Explicit instruction about multimodal representations is needed to foster students’ representational competence in the classroom. However, only a handful studies have surveyed how representations are actually used in science classes. This might be because of the fact that economical instruments for assessing the use of representations in classrooms are not available. To bridge that gap, an instrument was developed, field-tested in biology classes with 175 and 931 students, respectively, and analysed using exploratory and (multilevel) confirmatory factor analyses. Results supported an instrument with six scales and 21 items at the individual and classroom levels covering the following dimensions: (1) interpretation of visual representations, (2) construction of visual representations, (3) use of scientific texts (verbal representations), (4) use of symbolic representations, (5) number of terms used in class, and (6) the extent to which active social construction of knowledge is possible in the class. The scales showed satisfactory discriminant validity and reliability at each level. Further applications of this instrument for researchers and teachers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Realistic and logical pictures are both depictional representations. Depictions are spatial configurations that represent a subject with structural similarities between the object and the representation. In realistic pictures, such as photographs and drawings, the similarity between the object and the representation is concrete. In logical pictures, such as diagrams and graphs, the similarity is abstract (Schnotz 2001).

  2. Items adapted for this category indicate classroom situations in which students can engage actively in negotiating meaning.

  3. Baumert et al. (2008). (COACTIV: Professional competence of teachers, cognitively activating instruction, and development of students’ mathematical literacy was conceptually and technically embedded in the German extension to PISA 2003 and dealt with relationships among the professional competence of teachers, cognitively activating instruction, and the development of students’ mathematical literacy.)

References

  • Ainsworth, S. E. (1999). The functions of multiple representations. Computers & Education, 33, 131–152.

    Article  Google Scholar 

  • Ainsworth, S. E. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183–198.

    Article  Google Scholar 

  • Ainsworth, S. E., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333, 1096–1097.

    Article  Google Scholar 

  • Baumert, J., Blum, W., Brunner, M., Dubberke, T., Jordan, A., Klusmann, U., et al. (2008). Professionswissen von Lehrkräften, kognitiv aktivierender Mathematikunterricht und die Entwicklung von mathematischer Kompetenz (COACTIV): Dokumentation der Erhebungsinstrumente (Materialien aus der Bildungsforschung Nr. 83) [Professional competence of teachers, cognitively activating instruction, and development of students’ mathematical literacy (COACTIV): Documentation of instruments (materials for empirical educational research No. 83)]. Berlin: Max Planck Institute for Human Development.

  • Berck, K.-H., & Graf, D. (1992). Begriffsauswahl und Begriffsvermittlung: Überblick über den Forschungsstand für den Biologieunterricht [Selecting and teaching terms: Review of recent reseach in biology education]. In H. Entrich & L. Staeck (Eds.), Sprache und Verstehen im Biologieunterricht. Bad Zwischenahn: Leuchtturm-Verlag.

    Google Scholar 

  • Byrne, B. M. (1989). A primer of LISREL: Basic applications and programming for confirmatory factor analytic model. New York: Springer.

    Book  Google Scholar 

  • Cattell, R. (1966). Handbook of multivariate experimental psychology. Chicago, IL: Rand McNally.

    Google Scholar 

  • Clausen, M. (2002). Unterrichtsqualität: Eine Frage der Perspektive? [Instructional quality: A question of perspectives?]. Münster: Waxmann.

    Google Scholar 

  • De Jong, R., & Westerhof, K. J. (2001). The quality of student ratings of teacher behavior. Learning Environments Research, 4, 51–85.

    Article  Google Scholar 

  • Dedrick, R. F., & Greenbaum, P. E. (2011). Multilevel confirmatory factor analysis of a scale measuring interagency collaboration of children’s mental health agencies. Journal of Emotional and Behavioral Disorders, 19(1), 27–40.

    Article  Google Scholar 

  • diSessa, A. (2004). Metarepresentation: Native competence and targets for instruction. Cognition and Instruction, 22, 293–331.

    Article  Google Scholar 

  • diSessa, A., & Sherin, B. (2000). Meta-representation: An introduction. Journal of Mathematical Behavior, 19, 385–398.

    Article  Google Scholar 

  • Ferguson, E., & Cox, T. (1993). Exploratory factor analysis: A user’s guide. International Journal of Selection and Assessment, 1(2), 84–94.

    Article  Google Scholar 

  • Fraser, B. J. (1998a). Classroom environment instruments: Development, validity and applications. Learning Environments Research, 1, 7–33.

    Article  Google Scholar 

  • Fraser, B. J. (1998b). Science learning environments: Assessment, effects and determinants. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 527–564). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Fraser, B. J. (2007). Classroom learning environments. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 103–124). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Fraser, B. J., & Walberg, H. J. (1981). Psychosocial learning environment in science classrooms: A review of research. Studies in Science Education, 8(1), 67–92.

    Article  Google Scholar 

  • Gilbert, J. K. (2007). Visualization: A metacognitive skill in science and science education. In J. K. Gilbert (Ed.), Visualization in science education. Dordrecht: Springer.

  • Greeno, J. G., & Hall, R. (1997). Practicing representations: Learning with and about representational forms. Phi Delta Kappan, 78, 361–367.

    Google Scholar 

  • Hand, B., & Choi, A. (2010). Examing the impact of student use of multiple modal represenations in constructing arguments in organic chemistry laboratory classes. Research in Science Education, 40, 29–44.

    Article  Google Scholar 

  • Hand, B., Prain, V., Lawrence, C., & Yore, L. D. (1999). A writing in science framework designed to enhance science literacy. International Journal of Science Education, 21, 1021–1035.

    Article  Google Scholar 

  • Hattie, J. C. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. London: Routledge.

    Google Scholar 

  • Homburg, C., Pflesser, C., & Klarmann, M. (2008). Strukturgleichungsmodell mit latenten Variablen: Kausalanalyse [Structural equation modeling with latent variables: Causal analysis]. In A. Hermann, C. Homburg, & M. Klarmann (Eds.), Handbuch Marktforschung (Vol. 3, pp. 547–577). Wiesbaden: Gabler.

    Google Scholar 

  • Hox, J. J., & Maas, C. J. M. (2001). The accuracy of multilevel structural equation modeling with pseudobalanced groups and small samples. Structural equation modeling: A multidisciplinary Journal, 8, 157–174.

    Article  Google Scholar 

  • Hu, L.-T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.

    Article  Google Scholar 

  • Hubber, P., Tytler, R., & Hastam, F. (2010). Teaching and learning about force with a representational focus: Pedagogy and teacher change. Research in Science Education, 40, 5–28.

    Article  Google Scholar 

  • James, L. R., Demaree, R. G., & Wolf, G. (1984). Estimating within-group interrater reliability with and without response bias. Journal of Applied Psychology, 69, 85–98.

    Article  Google Scholar 

  • Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39, 31–35.

    Article  Google Scholar 

  • Kozma, R. B., Chin, E., Russell, J., & Marx, N. (2000). The roles of representations and tools in the chemistry laboratory and their implications for chemistry learning. Journal of the Learning Sciences, 9(2), 105–143.

    Article  Google Scholar 

  • Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34, 949–968.

    Article  Google Scholar 

  • Kozma, R. B., & Russell, J. (2005). Modeling students becoming chemists: Developing representational competence. In J. K. Gilbert (Ed.), Visualizations in science education (pp. 121–145). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Kress, G., Jewitt, C., Ogborn, J., & Tsatsarelis, C. (Eds.). (2001). Multimodal teaching and learning: Rhetorics of the science classroom (Advances in applied linguistics). London: Continuum.

    Google Scholar 

  • Kunter, M., & Baumert, J. (2006). Who is the expert? Construct and criteria validity of student and teacher ratings of instruction. Learning Environments Research, 9, 231–251.

    Article  Google Scholar 

  • Kunter, M., Brunner, M., Baumert, J., Klusmann, U., Krauss, S., Blum, W., et al. (2005). Der Mathematikunterricht der PISA-Schülerinnen und –Schüler [Quality of mathematics instruction across school types: Findings from PISA 2003]. Zeitschrift für Erziehungswissenschaft, 8, 502–520.

    Article  Google Scholar 

  • LeBreton, J. M., & Senter, J. L. (2008). Answers to 20 questions about interrater reliability and interrater agreement. Organizational Research Methods, 11, 815–852.

    Article  Google Scholar 

  • Lemke, J. L. (1990). Talking science: Language, learning, and value (Language and educational processes). Norwood, NJ: Ablex.

    Google Scholar 

  • Lemke, J. L. (1998). Multiplying meaning: Visual and verbal semiotics in scientific text. In J. Martin & R. Vell (Eds.), Readings science: Critical and functional perspectives on discourses of science (pp. 87–113). New York: Routledge.

    Google Scholar 

  • Lemke, J. L. (2003a). Teaching all the languages of science: Words, symbols, images, and actions. Accessed September 25, 2011 from http://academic.brooklyn.cuny.edu/education/jlemke/papers/barcelon.htm.

  • Lemke, J. L. (2003b). Mathematics in the middle: Measure, picture, gesture, sign and word. In M. Anderson, A. Sanenz-Ludlow, S. Zellweger, & V. V. Cifarelli (Eds.), Educational perspectives on mathematics as semiosis: From thinking to interpreting to knowing (pp. 215–234). Ottawa: Legas Publishing. [electronic version]. Accessed March 31, 2012 from http://academic.brooklyn.cuny.edu/education/jlemke/papers/myrdene.htm.

  • Lemke, J. L. (2004). The literacies of science. In E. W. Saul (Ed.), Crossing borders in literacy and science instruction: Perspectives on theory and practice (pp. 33–47). Newark, NJ: International Reading Association.

    Google Scholar 

  • Liszka, J. J. (1996). A general introduction to the semeiotic of Charles Sanders Peirce. Bloomington, IN: Indiana University Press.

    Google Scholar 

  • Lüdtke, O., Robitzsch, A., Trautwein, U., & Kunter, M. (2009). Assessing the impact of learning environments: How to use student ratings of classroom or school characteristics in multilevel modeling. Contemporary Educational Psychology, 34, 120–131.

    Article  Google Scholar 

  • Lüdtke, O., Trautwein, U., Kunter, M., & Baumert, J. (2006). Reliability and agreement of student ratings of the classroom environment: A reanalysis of TIMSS data. Learning Environments Research, 9, 215–230.

    Article  Google Scholar 

  • Lüdtke, O., Trautwein, U., Schnyder, I., & Niggli, A. (2007). Simultane Analysen auf Schüler- und Klassenebene. Eine Demonstration der konfirmatorischen Mehrebenen-Faktorenanalyse zur Analyse von Schülerwahrnehmungen am Beispiel der Hausaufgabenvergabe [Simultaneous analyses at student and class level: A demonstration of multilevel confirmatory factor analysis of student perceptions of homework assignment]. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 39(1), 1–11.

  • Merzyn, G. (1996). A comparison of some linguistic variables in fifteen science texts. In G. Welford, J. Osborne, & P. Scott (Eds.), Research in science education in Europe: Current issues and themes (pp. 361–369). London: Falmer Press.

    Google Scholar 

  • Mortimer, E., & Scott, P. (2000). Analysing discourse in the science classroom. In R. Millar, J. Leach, & J. Osborne (Eds.), Improving science education (pp. 127–143). Buckingham: Open University Press.

    Google Scholar 

  • Muthén, B. O. (1994). Multilevel covariance structure analysis. Sociological Methods and Research, 22, 376–398.

    Article  Google Scholar 

  • Muthén, L. K. & Muthén, B. O. (2007). Multilevel modeling with latent variables using Mplus (Unpublished manuscript).

  • Nitz, S., Nerdel, C., & Prechtl, H. (2012). Entwicklung eines Erhebungsinstruments zur Erfassung der Verwendung von Fachsprache im Biologieunterricht [Development of an instrument to assess the use of scientific language in biology classes]. Zeitschrift für die Didaktik der Naturwissenschaften, 18, 117–129.

    Google Scholar 

  • Norris, S. P., & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87, 224–240.

    Article  Google Scholar 

  • O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instruments, & Computers, 32, 396–402.

    Article  Google Scholar 

  • Peirce, C. S. (1986). On representations. In C. J. W. Kloesel, M. H. Fisch, D. D. Roberts, N. Houser, L. A. Ziegler, U. Niklas, A. Houser (Eds.), The writings of Charles S. Peirce: A chronological edition (Vol. 3, 1872–1878, pp. 62–65). Bloomington, IN: Indiana University.

  • Prain, V. (2006). Learning from writing in school science: Some theoretical and practical implications. International Journal of Science Education, 28, 179–201.

    Article  Google Scholar 

  • Prain, V., & Waldrip, B. G. (2006). An exploratory study of teachers’ and students’ use of multi-modal representations of concepts in primary science. International Journal of Science Education, 28, 1843–1866.

    Article  Google Scholar 

  • Raudenbush, S. W. (2005). Learning from attempts to improve schooling: The contribution of methodological diversity. Educational Researcher, 34(5), 25–31.

    Article  Google Scholar 

  • Rincke, K. (2010). Alltagssprache, Fachsprache und ihre besonderen Bedeutungen für das Lernen [Everyday and special language and their role in science education]. Zeitschrift für Didaktik der Naturwissenschaften, 16, 235–260.

    Google Scholar 

  • Schnotz, W. (2001). Sign systems, technologies, and the acquisition of knowledge. In J.-F. Rouet, J. Levonen, & A. Biardeau (Eds.), Multimedia learning: Cognitive and instructional issues (pp. 9–29). Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Scott, P. (1998). Teacher talk and meaning making in science classroom: A Vygotskian analysis and review. Studies in Science Education, 32(1), 45–80.

    Article  Google Scholar 

  • Seidel, T., & Shavelson, R. J. (2007). Teaching effectiveness research in the past decade: The role of theory and research design in disentangling meta-analysis results. Review of Educational Research, 77, 454–499.

    Article  Google Scholar 

  • Stieff, M. (2011). Improving representational competence using molecular simulations embedded in inquiry activities. Journal of Research in Science Teaching, 48, 1137–1158.

    Article  Google Scholar 

  • Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (Vol. 5). Boston, MA: Pearson.

    Google Scholar 

  • Tsui, C.-Y. (2003). Teaching and learning genetics with multiple representations. Unpublished Doctoral thesis. Curtin University of Technology, Perth, Australia. Accessed July 21, 2012 from http://espace.library.curtin.edu.au/R?func=dbin-jump-full&local_base=gen01-era02&object_id=14027.

  • Tytler, R., Peterson, S., & Prain, V. (2006). Picturing evaporation: Learning science literacy through a particle representation. Teaching Science, 52(1), 12–17.

    Google Scholar 

  • Waldrip, B. G., Prain, V., & Carolan, J. (2006). Learning junior secondary science through multi-modal representations. Electronic Journal of Science Education, 11(1), 87–107.

    Google Scholar 

  • Waldrip, B. G., Prain, V., & Carolan, J. (2010). Using multi-modal representations to improve learning in junior secondary science. Research in Science Education, 40(1), 65–80.

    Article  Google Scholar 

  • Weiber, R., & Mühlhaus, D. (2010). Strukturgleichungsmodellierung. Eine anwendungsorientierte Einführung in die Kausalanalyse mit Hilfe von AMOS, SmartPLS und SPSS [Structural equation modelling. A practical introduction to causal analysis using AMOS, SmartPLS, and SPSS]. Berlin: Springer.

  • Wellington, J., & Osborne, J. (2001). Language and literacy in science education. Buckingham, PA: Open University Press.

    Google Scholar 

  • Wu, H.-K., & Puntambekar, S. (2012). Pedagogical affordances of multiple external representations in scientific processes. Journal of Science Education and Technology,. doi:10.1007/s10956-011-9363-7.

    Google Scholar 

  • Yore, L. D. (2011). Foundations of scientific, mathematical, and technological literacies: Common themes and theoretical framework. In L. D. Yore, E. Van der Flier-Keller, D. W. Blades, T. W. Pelton, & D. B. Zandvliet (Eds.), Pacific CRYSTAL centre for science, mathematics, and technology literacy: Lessons learned (pp. 23–46). Rotterdam: Sense.

    Chapter  Google Scholar 

  • Yore, L. D., & Hand, B. (2010). Epilogue: Plotting a research agenda for multiple representations, multiple modality, and multimodal representational competency. Research in Science Education, 40, 93–101.

    Article  Google Scholar 

  • Yore, L. D., Pimm, D., & Tuan, H.-L. (2007). The literacy component of mathematical and scientific literacy. International Journal of Science and Mathematics Education, 5, 559–589.

    Article  Google Scholar 

Download references

Acknowledgments

We are gratefully acknowledge helpful comments on an earlier version of this manuscript by Larry D. Yore and Shari Yore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Nitz.

Appendix

Appendix

See Table 5.

Table 5 Item pool used in phase 3 of the study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nitz, S., Prechtl, H. & Nerdel, C. Survey of classroom use of representations: development, field test and multilevel analysis. Learning Environ Res 17, 401–422 (2014). https://doi.org/10.1007/s10984-014-9166-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10984-014-9166-x

Keywords

Navigation