Skip to main content

Advertisement

Log in

Ecological niche modeling, niche overlap, and good old Rabinowitz’s rarities applied to the conservation of gymnosperms in a global biodiversity hotspot

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Biodiversity hotspots harbor 77% of endemic plant species. Patagonian Temperate Forest (PTF) is a part of a biodiversity hotspot, but over the past centuries, has been over-exploited, fragmented and replaced with exotic species plantations, lately also threatened by climate change.

Objectives

Our aim is to better understand patterns of habitat suitability and niche overlap of nine endemic gymnosperm species, key elements of the PTF, complementing traditional approaches of biodiversity conservation.

Methods

Using R packages and 3016 occurrence data, we deployed ecological niche models (ENM) in MaxEnt via kuenm, and classified species according to Rabinowitz’s types of rarity. We then overlapped their niches calculating Schoener's D index, and considered types of rarity in a spatial ecological context. Finally, we overlay high species’ suitability and protected areas and detected conservation priorities using GapAnalysis.

Results

We generated simplified ENMs for nine Patagonian gymnosperms and found that most niches overlap, and only one species displayed a unique niche. Surprisingly, we found that three species have divergent suitability of habitats across the landscape and not related with previously published geographic structure of neutral genetic variation. We showed that the rarer a species is the smaller niche volume tend to have, that six out of nine studied species have high conservation priority, and that there are conservation gaps in the PTF.

Conclusion

Our approach showed that there are unprotected suitable areas for native key species at high risk in PTF. Suggesting that integrating habitat-suitability models of multiple species, types of rarity, and niche overlap, can be a handy tool to identify potential conservation areas in global biodiversity hotspots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data is available on-line repositories as are expressed in main manuscript.

Code availability

All software used in this study are referenced.

References

  • Aguirre-Gutiérrez J, Serna-Chavez HM, Villalobos-Arambula AR et al (2015) Similar but not equivalent: ecological niche comparison across closely–related Mexican white pines. Divers Distrib 21:245–257

    Article  Google Scholar 

  • Alaniz AJ, Galleguillos M, Perez-Quezada JF (2016) Assessment of quality of input data used to classify ecosystems according to the IUCN Red List methodology: The case of the central Chile hotspot. Biol Conserv 204:378–385

    Article  Google Scholar 

  • Allnutt TR, Courtis JR, Gardner M, Newton AC (2001) Genetic variation in wild Chilean and cultivated British populations of Podocarpus salignus D. Don (Podocarpaceae). Edinb J Bot 58:459

    Article  Google Scholar 

  • Armesto JJ, Rozzi R, Caspersen J (2001) Temperate forests of North and South America. In: Sala OE, Huber-Sannwald E, Iii FS (eds) Global Biodiversity in a Changing Environment. Springer, New York, NY, pp 223–249

    Chapter  Google Scholar 

  • Armesto JJ, Rozzi R, Smith RC, Arroyo MT (1998) Conservation targets in South American temperate forests. Science 282:1271–1272

    Article  Google Scholar 

  • Barreda V, Palazzesi L (2007) Patagonian vegetation turnovers during the Paleogene, early Neogene: origin of arid, adapted floras. Bot Rev 73:31–50

    Article  Google Scholar 

  • Bekessy SA, Ennos RA, Burgman MA et al (2003) Neutral DNA markers fail to detect genetic divergence in an ecologically important trait. Biol Conserv 110:267–275

    Article  Google Scholar 

  • Blanquart F, Kaltz O, Nuismer SL, Gandon S (2013) A practical guide to measuring local adaptation. Ecol Lett 16:1195–1205

    Article  PubMed  Google Scholar 

  • Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Mod 275:73–77

    Article  Google Scholar 

  • Broennimann O, Fitzpatrick MC, Pearman PB et al (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecol Biogeog 21:481–497

    Article  Google Scholar 

  • Broennimann O, Vittoz P, Moser D, Guisan A (2005) Rarity types among plant species with high conservation priority in Switzerland. Bot Helve 115:95–108

    Article  Google Scholar 

  • Cadotte MW, Davies JT (2010) Rarest of the rare: advances in combining evolutionary distinctiveness and scarcity to inform conservation at biogeographical scales. Divers Distrib 16:376–385

    Article  Google Scholar 

  • Carver D, Sosa CC, Khoury CK et al (2021) GapAnalysis: an R package to calculate conservation indicators using spatial information. Ecography 44:1000–1009

    Article  Google Scholar 

  • Casazza G, Abeli T, Bacchetta G et al (2021) Combining conservation status and species distribution models for planning assisted colonisation under climate change. J Ecol 109:2284–2295

    Article  Google Scholar 

  • Choe H, Thorne JH, Hijmans R, Seo C (2019) Integrating the Rabinowitz rarity framework with a national plant inventory in South Korea. Ecol Evol 9:1353–1363

    Article  PubMed  PubMed Central  Google Scholar 

  • Cobos ME, Peterson AT, Barve N, Osorio-Olvera L (2019) kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ 7:e6281

    Article  PubMed  PubMed Central  Google Scholar 

  • Dengler J, Chytrý M, Ewald J (2008) Phytosociology. In: Fath B (ed) Encyclopedia of Ecology, 2nd edn. Elsevier, Amsterdam, pp 516–527

    Chapter  Google Scholar 

  • Donoso C (1995) Bosques templados de Chile y Argentina. Editorial Universitaria Santiago de Chile, Chile, Variación estructura y dinámica

    Google Scholar 

  • Donoso C (2006) Las especies arbóreas de los bosques templados de Chile y Argentina: Autoecología. Marisa Cuneo Ediciones, Chile

    Google Scholar 

  • Durán AP, Casalegno S, Marquet PA, Gaston KJ (2013) Representation of ecosystem services by terrestrial protected areas: Chile as a case study. PLoS ONE 8:e82643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elith J, Graham CH (2009) Do they? How do they? WHY do they differ? – on finding reasons for differing performances of species distribution models. Ecoghaphy 32:66–77

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T et al (2011) A statistical explanation of MaxEnt for ecologists. Diver Distrib 17:43–57

    Article  Google Scholar 

  • Essl F, Dullinger S, Plutzar C et al (2011) Imprints of glacial history and current environment on correlations between endemic plant and invertebrate species richness. J Biogeog 38:604–614

    Article  Google Scholar 

  • Fajardo A, Llancabure JC, Moreno PC (2021) Assessing forest degradation using multivariate and machine-learning methods in the Patagonian temperate rain forest. Ecol Appl 32(2):e02495

    Google Scholar 

  • Fick SE, Hijmans RJ (2017) Worldclim 2: New 1, km spatial resolution climate surfaces for global land areas. Int Climatol 37:4302–4315

    Article  Google Scholar 

  • Fleishman E, Noss RF, Noon BR (2006) Utility and limitations of species richness metrics for conservation planning. Ecol Indicators 6:543–553

    Article  Google Scholar 

  • Franklin J (2010) Moving beyond static species distribution models in support of conservation biogeography. Divers Distrib 16:321–330

    Article  Google Scholar 

  • Fuentes-Castillo T, Hernández HJ, Pliscoff P (2020) Hotspots and ecoregion vulnerability driven by climate change velocity in Southern South America. Reg Environ Change 20:1–15

    Article  Google Scholar 

  • Gaston KJ (1994) Rarity. Chapman and Hall, London. Springer, Dordrecht

  • Gaston KJ, Blackburn TM, Greenwood JJ et al (2000) Abundance–occupancy relationships. J Applied Ecol 37:39–59

    Article  Google Scholar 

  • GBIF (2019) repository: Araucaria araucana GBIF.org (28th March 2019) GBIF Occurrence Download https://doi.org/10.15468/dl.1wxfnq; Fitzroya cupressoides GBIF.org (21st March 2019) GBIF Occurrence Download https://doi.org/10.15468/dl.8ckslx; Lepidothamnus fonkii GBIF.org (20th March 2019) GBIF Occurrence Download https://doi.org/10.15468/dl.yooxjt; Pilgerodendron uviferum GBIF.org (21st March 2019) GBIF Occurrence Download https://doi.org/10.15468/dl.ikmpcx; Prumnopitys andina GBIF.org (27th February 2019) GBIF Occurrence Download; https://doi.org/10.15468/dl.wlk4lx; Saxegothaea conspicua GBIF.org (26th February 2019) GBIF Occurrence Download https://doi.org/10.15468/dl.crbcop

  • Harnik PG, Simpson C, Payne JL (2012) Long-term differences in extinction risk among the seven forms of rarity. Proc R Soc B 279:4969–4976

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison S, Noss R (2017) Endemism hotspots are linked to stable climatic refugia. Annals Bot 119:207–214

    Article  Google Scholar 

  • Herrera JP (2020) Convergent evolution in lemur environmental niches. J Biogeog 47:795–806

    Article  Google Scholar 

  • Hinojosa LF, Villagrán C (1997) Historia de los bosques del sur de Sudamérica I: antecedentes paleobotánicos geológicos y climáticos del Terciario del cono sur de América. Rev Chil Hist Nat 70:225–239

    Google Scholar 

  • IUCN (International Union for Conservation of Nature) SSC (Species Survival Commission). (2013). IUCN guidelines for reintroductions and other conservation translocations. IUCN SSC

  • Jaisankar I, Velmurugan A, Sivaperuman C (2018) Biodiversity Conservation: issues and Strategies for the Tropical Islands. In: Sivaperuman C, Velmurugan A, Singh AK, Jaisankar I (eds) Biodiversity and Climate Change Adaptation in Tropical Islands. Academic Press, Cambridge, pp 525–552

    Google Scholar 

  • Jetz W, Rahbek C, Colwell RK (2004) The coincidence of rarity and richness and the potential signature of history in centres of endemism. Ecol Lett 7:1180

    Article  Google Scholar 

  • Lacher I (2018) Systematic Conservation Planning in the Anthropocene. In: Dellasala DA, Goldstein MI (eds) Encyclopedia of the Anthropocene. Elsevier, Amsterdam, pp 461–469

    Chapter  Google Scholar 

  • Leslie AB, Beaulieu JM, Rai HS et al (2012) Hemisphere, scale differences in conifer evolutionary dynamics. PNAS 109:16217–16221

    Article  PubMed  PubMed Central  Google Scholar 

  • Luebert F, Pliscoff P (2006) Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria, Santiago de Chile

  • Martín MA, Mattioni C, Lusini I et al (2014) New insights into the genetic structure of Araucaria araucana forests based on molecular and historic evidences. Tree Genet Genomes 10:839–851

    Article  Google Scholar 

  • Martínez-Méndez N, Aguirre-Planter E, Eguiarte EL et al (2016) Modelado de nicho ecológico de las especies del género Abies (Pinaceae) en México: Algunas implicaciones taxonómicas y para la conservación. Bot Sci 94:5–24

    Article  Google Scholar 

  • Martínez-Tilleria K, Núñez-Ávila M, León CA et al (2017) A framework for the classification Chilean terrestrial ecosystems as a tool for achieving global conservation targets. Biodiv Conserv 26:2857–2876

    Article  Google Scholar 

  • Miranda A, Altamirano A, Cayuela L et al (2016) Native forest loss in the Chilean biodiversity hotspot: revealing the evidence. Reg Environ Change 17:285–297

    Article  Google Scholar 

  • Mittermeier RA, Turner WR, Larsen FW et al (2011) Global biodiversity conservation: the critical role of hotspots. In: Zachos FE, Habel JC (eds) Biodiversity Hotspots. Springer Publishers, London, pp 3–22

    Chapter  Google Scholar 

  • Moreira-Muñoz A, Troncoso J (2014) Representatividad biogeográfica de las Reservas de la Biosfera de Chile. In: Moreira-Muñoz A, Borsdorf A (eds) Reservas de la Biosfera de Chile: Laboratorios para la Sustentabilidad. Academia de Ciencias Austriaca, Pontificia Universidad Católica de Chile, Instituto de Geografía, Santiago, serie Geolibros 17:24–61

  • Morente-López J, Kass JM, Lara-Romero C et al (2020) Ecological niche models as hypothesis generators of functional genetic differentiation and potential local adaptation in a Mediterranean alpine ecosystem. BioRxiv. https://doi.org/10.1101/2020.02.18.954867

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    Article  PubMed  CAS  Google Scholar 

  • Orsenigo S, Montagnani C, Fenu G et al (2018) Red listing plants under full national responsibility: extinction risk and threats in the vascular flora endemic to Italy. Biol Conserv 224:213–222

    Article  Google Scholar 

  • Osorio-Olvera L, Lira-Noriega A, Soberón J et al (2020) ntbox: an r package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods Ecol Evol 11:1199–1206

    Article  Google Scholar 

  • Otavo S, Echeverría C (2017) Fragmentación progresiva y pérdida de hábitat de bosques naturales en uno de los hotspot mundiales de biodiversidad. Revista Mexicana de Biodiversidad 88:924–935

    Article  Google Scholar 

  • Ozinga WA, Römermann C, Bekker RM et al (2009) Dispersal failure contributes to plant losses in NW Europe. Ecol Lett 12:66–74

    Article  PubMed  Google Scholar 

  • Phillips SJ, Anderson RP, Dudík M et al (2017) Opening the black box: an open-source release of Maxent. Ecography 40:887–893

    Article  Google Scholar 

  • Premoli AC, Kitzberger T, Veblen TT (2000) Isozyme variation and recent biogeographical history of the long-lived conifer Fitzroya cupressoides. J Biogeog 27:251–260

    Article  Google Scholar 

  • Premoli AC, Souto CP, Mathiasen P, Acosta MC (2018) Refugios antiguos de bosque en la Cordillera de la Costa. In: Smith C, Armesto J, Valdovinos C (eds) Historia biogeográfica, ecología y biodiversidad de la Cordillera de la costa de Chile. Editorial Universitaria, Santiago de Chile, p 742

    Google Scholar 

  • Premoli AC, Souto CP, Rovere AE, Allnut TR, Newton AC (2002) Patterns of isozyme variation as indicators of biogeographic history in Pilgerodendron uviferum (DDon) Florin. Divers Distrib 8:57–66

    Article  Google Scholar 

  • QGIS, 2019. QGIS Geographic Information System. QGIS Association. http://www.qgis.org. Accessed 17 Aug 2019

  • Quiroga MP, Mathiasen P, Iglesias A et al (2016) Molecular and fossil evidence disentangle the biogeographical history of Podocarpus a key genus in plant geography. J Biogeog 43:372–383

    Article  Google Scholar 

  • Quiroga MP, Premoli AC (2010) Genetic structure of Podocarpus nubigenus (Podocarpaceae) provides evidence of Quaternary and ancient historical events. Palaeogeo Palaeoecol 285:186–193

    Article  Google Scholar 

  • R Development Core Team. 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Viena, Austria

  • Rabinowitz D (1981) Seven forms of rarity. In: Synge H (ed) The biological aspects of rare plant conservation. Wiley, Hoboken, pp 205–215

    Google Scholar 

  • Ramírez-Bautista A, Thorne JH, Schwartz MW, Williams JN (2020) Trait-based climate vulnerability of native rodents in southwestern Mexico. Ecol Evol 10:5864–5876

    Article  PubMed  PubMed Central  Google Scholar 

  • Richardson DM, Whittaker RJ (2010) Conservation biogeography–foundations concepts and challenges. Divers Distrib 16:313–320

    Article  Google Scholar 

  • Scherson RA, Albornoz AA, Moreira-Muñoz AS, Urbina-Casanova R (2014) Endemicity and evolutionary value: a study of Chilean endemic vascular plant genera. Ecol Evol 4:806–816

    Article  PubMed  PubMed Central  Google Scholar 

  • Scherson RA, Thornhill AH, Urbina-Casanova R et al (2017) Spatial phylogenetics of the vascular flora of Chile. Mol Phylogenet Evol 112:88–95

    Article  PubMed  Google Scholar 

  • Schoener T (1968) The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49:704–726

    Article  Google Scholar 

  • Schutz J (2018) Creating an integrated protected area network in Chile: a GIS assessment of ecoregion representation and the role of private protected areas. Environ Conserv 45:269–277

    Article  Google Scholar 

  • Scoble J, Lowe AJ (2010) A case for incorporating phylogeography and landscape genetics into species distribution modelling approaches to improve climate adaptation and conservation planning. Divers Distrib 16:343–353

    Article  Google Scholar 

  • Searcy CA, Shaffer HB (2016) Do ecological niche models accurately identify climatic determinants of species ranges? Am Nat 187:423–435

    Article  PubMed  Google Scholar 

  • Silva DP, Vilela B, De Marco JP, Nemesio A (2014) Using ecological niche models and niche analyses to understand speciation patterns: the case of sister neotropical orchid bees. PLoS ONE. https://doi.org/10.1371/journal.pone.0113246

    Article  PubMed  PubMed Central  Google Scholar 

  • Slatyer RA, Hirst M, Sexton JP (2013) Niche breadth predicts geographical range size: a general ecological pattern. Ecol Lett 16:1104–1114

    Article  PubMed  Google Scholar 

  • Smith-Ramírez C (2004) The Chilean coastal range: a vanishing center of biodiversity and endemism in South American temperate rainforests. Biodivers Conserv 13:373–393

    Article  Google Scholar 

  • Soberón J, Nakamura M (2009) Niches and distributional areas: concepts methods and assumptions. PNAS 106(Supplement 2):19644–19650

    Article  PubMed  PubMed Central  Google Scholar 

  • Souto CP, Kitzberger T, Arbetman MP, Premoli AC (2015a) How do cold-sensitive species endure ice ages? Phylogeographic and paleodistribution models of postglacial range expansion of the mesothermic drought-tolerant conifer Austrocedrus chilensis. New Phytol 208:960–972

    Article  PubMed  Google Scholar 

  • Souto CP, Mathiasen P, Acosta MC et al (2015b) Identifying genetic hotspots by mapping molecular diversity of widespread trees: when commonness matters. J Heredity 106(S1):537–545

    Article  CAS  Google Scholar 

  • Synes NW, Bsborne PE (2011) Choice of predictor variables as a source of uncertainty in continental, scale species distribution modelling under climate change. Glob Ecol Biogeog 20:904–914

    Article  Google Scholar 

  • UNEP-WCMC (2021), WDPA WDOECM Jun2021 Public SA shp 1, 2 and 3: The World Database on Protected Areas (WDPA)/OECM Database statistics. Cambridge, RU: UNEP- WCMC

  • Wang IJ, Bradburd GS (2014) Isolation by environment. Mol Ecol 23:5649–5662

    Article  PubMed  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883

    Article  PubMed  Google Scholar 

  • Whittaker RJ, Araújo MB, Jepson P et al (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23

    Article  Google Scholar 

  • Wiens JJ, Ackerly DD, Allen AP et al (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324

    Article  PubMed  Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539

    Article  Google Scholar 

  • Yang ZY, Ran JH, Wang XQ (2012) Three genome, based phylogeny of Cupressaceae sl: further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography. Mol Phylogenet Evol 64:452–470

    Article  PubMed  Google Scholar 

  • Yeaman S, Hodgins KA, Lotterhos KE et al (2016) Convergent local adaptation to climate in distantly related conifers. Science 353:1431–1433

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Dobson FS (2000) Seven forms of rarity in mammals. J Biogeog 27:131–139

    Article  Google Scholar 

  • Zhao G, Cui X, Sun J et al (2021) Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecol Indic 132:108256

    Article  Google Scholar 

  • Zhao Q, Zhang H, Wei J (2019) Climatic niche comparison across a cryptic species complex. PeerJ 7:e7042

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Laura Salazar and Paula Mathiasen provided technical assistance on early stages of the MS. Cristian Echeverria shared his personal records for P. salignus. Emiliano Quiroga provided R scripts to test niche overlap. Marlon Cobos for technical support on kuenm analysis. Chrystian Camilo Sosa Arango for technical support on GapAnalysis. Fernando Sánchez and Sandro Boi (our husbands, whom shared our respective quarantine offices) for providing observations on early stages of the MS.

Funding

Funding PICT 2019–149; UNC B235.

Author information

Authors and Affiliations

Authors

Contributions

PQ and CS: have the equal participation in the construction and design of the study, in writing, in development of the analyses performed, and in the interpretation results.

Corresponding author

Correspondence to M. Paula Quiroga.

Ethics declarations

Conflicts of interest

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10980_2022_1502_MOESM1_ESM.pdf

Supplementary file1 (PDF 3890 KB) Supplementary Information 1. a: Summary of statistically significant simplified model (S3ENM) obtained using kuenm and MaxEnt distribution models. b: Detailed kuenm model selection for each gymnosperm species from Patagonian Temperate Forest (PTF).

10980_2022_1502_MOESM2_ESM.docx

Supplementary file2 (DOCX 107 KB) Supplementary Information 2. Pearson correlation’s matrices of 19 WorldClim bioclimatic variables clipped across the M zone of each of the nine gymnosperm species from Patagonian temperate forest using NichToolBox R-script (Osorio-Olvera et al. 2020). In Bold r values for variables selected in S3ENM.

10980_2022_1502_MOESM3_ESM.pdf

Supplementary file3 (PDF 2018 KB) Supplementary Information 3. Detailed niche partition process for P. uviferum, L. fonkii and S. conspicua. Comparison of MaxEnt models, response curves, analyses of variable contribution, jackknife test of variable importance, and Pearson correlation matrix for complete distributions and putative geographic sectors.

10980_2022_1502_MOESM4_ESM.docx

Supplementary file4 (DOCX 74 KB) Supplementary Information 4. Rabinowitz’s types of rarities classification table and lineal models relating them with niche volume for nine gymnosperm species from Patagonian Temperate Forest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quiroga, M.P., Souto, C.P. Ecological niche modeling, niche overlap, and good old Rabinowitz’s rarities applied to the conservation of gymnosperms in a global biodiversity hotspot. Landsc Ecol 37, 2571–2588 (2022). https://doi.org/10.1007/s10980-022-01502-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-022-01502-z

Keywords

Navigation