Skip to main content

Advertisement

Log in

Drought-induced forest dieback increases taxonomic, functional, and phylogenetic diversity of saproxylic beetles at both local and landscape scales

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Many forest ecosystems around the world are facing increasing drought-induced dieback, causing mortality patches across the landscape at multiple scales. This increases the supply of biological legacies and differentially affects forest insect communities.

Objectives

We analysed the relative effects of local- and landscape-level dieback on local saproxylic beetle assemblages. We assessed how classical concepts in spatial ecology (e.g., habitat-amount and habitat-patch hypotheses) are involved in relationships between multi-scale spatial patterns of available resources and local communities.

Methods

We sampled saproxylic beetle assemblages in commercial fir forests in the French highlands. Through automatic aerial mapping, we used percentage of dead tree crown pixels to assess dieback levels at several nested spatial scales. We analysed beetle taxonomic, phylogenetic and functional diversity related to differing levels of multi-scale dieback.

Results

We found that taxonomic, functional, and phylogenetic diversity of saproxylic beetle assemblages significantly benefitted from forest dieback, at both local and landscape scales. We detected significant effects in the multiplicative models combining local and landscape variables only for phylogenetic diversity. Increased landscape-scale dieback also caused a functional specialisation of beetle assemblages, favouring those related to large and well-decayed deadwood.

Conclusions

Increasing tree mortality under benign neglect provides conservation benefits by heterogenising the forest landscape and enhancing deadwood habitats. Legacy retention practices could take advantage of unharvested, declining forest stands to promote species richness and functional diversity within conventionally managed forest landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: EUFORGEN; Caudullo et al. (2020). Mapping was performed in QGIS 3.10

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available in the Knowledge Network for Biocomplexity (KNB) repository, https://doi.org/10.5063/F18W3BR1. Phylogenetic data are available in https://doi.org/10.5883/DS-PHYLOCOL.

Code availability

Not applicable.

References

  • Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Article  Google Scholar 

  • Ammer C, Fichtner A, Fischer A et al (2018) Key ecological research questions for Central European forests. Basic Appl Ecol 32:3–25

    Article  Google Scholar 

  • Anderegg WRL, Kane JM, Anderegg LDL (2013) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Change 3:30–36

    Article  Google Scholar 

  • Andrew ME, Ruthrof KX, Matusick G, Hardy GESTJ (2016) Spatial Configuration of Drought Disturbance and Forest Gap Creation across Environmental Gradients. PLoS ONE 11:e0157154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bates D, Maechler M, Bolker [aut B et al (2020) lme4: linear mixed-effects models using “Eigen” and S4. version 1.1–23. https://CRAN.R-project.org/package=lme4

  • Bergman K-O, Jansson N, Claesson K et al (2012) How much and at what scale? Multiscale analyses as decision support for conservation of saproxylic oak beetles. For Ecol Manag 265:133–141

    Article  Google Scholar 

  • Beudert B, Bässler C, Thorn S et al (2015) Bark beetles increase biodiversity while maintaining drinking water quality. Conserv Lett 8:272–281

    Article  Google Scholar 

  • Bouget C, Duelli P (2004) The effects of windthrow on forest insect communities: a literature review. Biol Conserv 118:281–299

    Article  Google Scholar 

  • Bouget C, Brustel H, Nageleisen L-M (2005) Nomenclature of wood-inhabiting groups in forest entomology: synthesis and semantic adjustments. C R Biol 328:936–948

    Article  PubMed  Google Scholar 

  • Bouget C, Larrieu L, Nusillard B, Parmain G (2013) In search of the best local habitat drivers for saproxylic beetle diversity in temperate deciduous forests. Biodivers Conserv 22:2111–2130

    Article  Google Scholar 

  • Bouget C, Larrieu L, Brin A (2014) Key features for saproxylic beetle diversity derived from rapid habitat assessment in temperate forests. Ecol Indic 36:656–664

    Article  Google Scholar 

  • Bouget C, Brustel H, Noblecourt T, Zagatti P (2019) Les Coléoptères saproxyliques de France: Catalogue écologique illustré. Editions du MNHN, Paris

    Google Scholar 

  • Bowd EJ, Banks SC, Bissett A et al (2021) Direct and indirect disturbance impacts in forests. Ecol Lett 24:1225–1236

    Article  PubMed  Google Scholar 

  • Braumoeller BF (2004) Hypothesis testing and multiplicative interaction terms. Int Organ 58:807–820

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Cai W, Yang C, Wang X et al (2021) The ecological impact of pest-induced tree dieback on insect biodiversity in Yunnan pine plantations, China. For Ecol Manag 491:119173

    Article  Google Scholar 

  • Calix M, Alexander KNA, Nieto A et al (2018) European red list of saproxylic beetles. IUCN, Brussels

    Google Scholar 

  • Caudullo G, Welk E, San-Miguel-Ayanz J (2020) Chorological data for the main European woody species 12

  • Clavel J, Julliard R, Devictor V (2011) Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ 9:222–228

    Article  Google Scholar 

  • Courbaud B, Larrieu L, Kozak D et al (2022) Factors influencing the rate of formation of tree-related microhabitats and implications for biodiversity conservation and forest management. J Appl Ecol 59:492–503

    Article  Google Scholar 

  • Cours J, Larrieu L, Lopez-Vaamonde C et al (2021) Contrasting responses of habitat conditions and insect biodiversity to pest- or climate-induced dieback in coniferous mountain forests. For Ecol Manag 482:118811

    Article  Google Scholar 

  • De Luca G, Silva NJM, Cerasoli S et al (2019) Object-based land cover classification of cork oak woodlands using UAV imagery and Orfeo ToolBox. Remote Sens 11:1238

    Article  Google Scholar 

  • Delignette-Muller M-L, Dutang C, Pouillot R et al (2019) fitdistrplus: help to fit of a parametric distribution to non-censored or censored data. Version 1.0–14. https://CRAN.R-project.org/package=fitdistrplus

  • Devictor V, Mouillot D, Meynard C et al (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol Lett 13:1030–1040

    PubMed  Google Scholar 

  • Drénou C, Giraud F, Gravier H et al (2013) Le diagnostic architectural: un outil d’évaluation des sapinières dépérissantes. Forêt Méditerranéenne 34:87–98

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663

    Article  Google Scholar 

  • Franc N, Götmark F, Økland B et al (2007) Factors and scales potentially important for saproxylic beetles in temperate mixed oak forest. Biol Conserv 135:86–98

    Article  Google Scholar 

  • Franklin JF, Lindenmayer D, MacMahon JA et al (2000) Threads of continuity. Conserv Biol Pract 1:8–16

    Article  Google Scholar 

  • Gámez-Virués S, Perović DJ, Gossner MM et al (2015) Landscape simplification filters species traits and drives biotic homogenization. Nat Commun 6:8568

    Article  PubMed  CAS  Google Scholar 

  • Gibb H, Hjältén J, Ball JP et al (2006) Effects of landscape composition and substrate availability on saproxylic beetles in boreal forests: a study using experimental logs for monitoring assemblages. Ecography 29:191–204

    Article  Google Scholar 

  • Godeau U, Bouget C, Piffady J et al (2020) The importance of being random! Taking full account of random effects in nonlinear sigmoid hierarchical Bayesian models reveals the relationship between deadwood and the species richness of saproxylic beetles. For Ecol Manag 465:118064

    Article  Google Scholar 

  • Gossner MM, Lachat T, Brunet J et al (2013) Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv Biol 27:605–614

    Article  PubMed  Google Scholar 

  • Grizonnet M, Michel J, Poughon V et al (2017) Orfeo ToolBox: open source processing of remote sensing images. Open Geospatial Data Softw Standards 2:15

    Article  Google Scholar 

  • Grove SJ (2002) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23

    Article  Google Scholar 

  • Haeler E, Bergamini A, Blaser S et al (2021) Saproxylic species are linked to the amount and isolation of dead wood across spatial scales in a beech forest. Landsc Ecol 36:89–104

    Article  Google Scholar 

  • Hagge J, Müller J, Birkemoe T et al (2021) What does a threatened saproxylic beetle look like? Modelling extinction risk using a new morphological trait database. J Anim Ecol 90:1934–1947

    Article  PubMed  Google Scholar 

  • Hlásny T, König L, Krokene P et al (2021) Bark beetle outbreaks in europe: state of knowledge and ways forward for management. Curr Forestry Rep 7:138–165

    Article  Google Scholar 

  • Immitzer M, Vuolo F, Atzberger C (2016) First experience with sentinel-2 data for crop and tree species classifications in Central Europe. Remote Sens 8:166

    Article  Google Scholar 

  • Inglada J, Vincent A, Arias M et al (2017) Operational high resolution land cover map production at the country scale using satellite image time series. Remote Sens 9:95

    Article  Google Scholar 

  • Jackson HB, Fahrig L (2015) Are ecologists conducting research at the optimal scale? Glob Ecol Biogeogr 24:52–63

    Article  Google Scholar 

  • Janssen P, Cateau E, Fuhr M et al (2016) Are biodiversity patterns of saproxylic beetles shaped by habitat limitation or dispersal limitation? A case study in unfragmented montane forests. Biodivers Conserv 25:1167–1185

    Article  Google Scholar 

  • Janssen P, Fuhr M, Cateau E et al (2017) Forest continuity acts congruently with stand maturity in structuring the functional composition of saproxylic beetles. Biol Conserv 205:1–10

    Article  Google Scholar 

  • Johnstone JF, Allen CD, Franklin JF et al (2016) Changing disturbance regimes, ecological memory, and forest resilience. Front Ecol Environ 14:369–378

    Article  Google Scholar 

  • Kašák J, Foit J (2018) Shortage of declining and damaged sun-exposed trees in European mountain forests limits saproxylic beetles: a case study on the endangered longhorn beetle Ropalopus ungaricus (Coleoptera: Cerambycidae). J Insect Conserv 22:171–181

    Article  Google Scholar 

  • Kembel SW, Ackerly DD, Blomberg SP et al (2020) picante: integrating phylogenies and ecology. Version 1.8.2. https://CRAN.R-project.org/package=picante

  • Komonen A, Müller J (2018) Dispersal ecology of deadwood organisms and connectivity conservation. Conserv Biol 32:535–545

    Article  PubMed  Google Scholar 

  • Kozák D, Svitok M, Wiezik M et al (2020) Historical disturbances determine current taxonomic, functional and phylogenetic diversity of saproxylic beetle communities in temperate primary forests. Ecosystems

  • Kozel P, Sebek P, Platek M et al (2021) Connectivity and succession of open structures as a key to sustaining light-demanding biodiversity in deciduous forests. J Appl Ecol. https://doi.org/10.1111/1365-2664.14019

    Article  Google Scholar 

  • Krawchuk MA, Meigs GW, Cartwright JM et al (2020) Disturbance refugia within mosaics of forest fire, drought, and insect outbreaks. Front Ecol Environ 18:235–244

    Article  Google Scholar 

  • Kuuluvainen T (2016) Conceptual models of forest dynamics in environmental education and management: keep it as simple as possible, but no simpler. For Ecosyst 3:18

    Article  Google Scholar 

  • Lachat T, Bouget C, Bütler R, Müller J (2013) Deadwood: quantitative and qualitative requirements for the conservation of saproxylic biodiversity. In: Integrative approaches as an opportunity for the conservation of forest biodiversity. European Forest Institute, p 92

  • Lachat T, Chumak M, Chumak V et al (2016) Influence of canopy gaps on saproxylic beetles in primeval beech forests: a case study from the Uholka-Shyrokyi Luh forest, Ukraine. Insect Conserv Divers 9:559–573

    Article  Google Scholar 

  • Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. Version 1.0–12. https://CRAN.R-project.org/package=FD

  • Lambert J, Drenou C, Denux J-P et al (2013) Monitoring forest decline through remote sensing time series analysis. Gisci Remote Sens 50:437–457

    Article  Google Scholar 

  • Larrieu L, Paillet Y, Winter S et al (2018) Tree related microhabitats in temperate and Mediterranean European forests: a hierarchical typology for inventory standardization. Ecol Indic 84:194–207

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology: the Robert H MacArthur Award Lecture. Ecology 73:1943–1967

    Article  Google Scholar 

  • Lüdecke D, Makowski D, Waggoner P, Patil I (2020) performance: assessment of regression models performance. Version 0.4.6. https://CRAN.R-project.org/package=performance

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Magnusson A, Skaug H, Nielsen A et al (2020) glmmTMB: generalized linear mixed models using template model builder. Version 1.0.1. https://CRAN.R-project.org/package=glmmTMB

  • McDowell NG, Allen CD, Anderson-Teixeira K et al (2020) Pervasive shifts in forest dynamics in a changing world. Science 368:eaaz9463

    Article  CAS  PubMed  Google Scholar 

  • Mouillot D, Graham NAJ, Villéger S et al (2013) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28:167–177

    Article  PubMed  Google Scholar 

  • Müller J, Bütler R (2010) A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. Eur J for Res 129:981–992

    Article  Google Scholar 

  • Müller J, Bußler H, Goßner M et al (2008) The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. Biodivers Conserv 17:2979

    Article  Google Scholar 

  • Müller J, Noss RF, Bussler H, Brandl R (2010) Learning from a “benign neglect strategy” in a national park: response of saproxylic beetles to dead wood accumulation. Biol Conserv 143:2559–2569

    Article  Google Scholar 

  • Müller J, Noss RF, Thorn S et al (2019) Increasing disturbance demands new policies to conserve intact forest. Conserv Lett 12:e12449

    Article  Google Scholar 

  • Nipperess DA, Matsen FA (2013) The mean and variance of phylogenetic diversity under rarefaction. Methods Ecol Evol 4:566–572

    Article  PubMed  PubMed Central  Google Scholar 

  • Ojeda VS, Suarez ML, Kitzberger T (2007) Crown dieback events as key processes creating cavity habitat for magellanic woodpeckers. Austral Ecol 32:436–445

    Article  Google Scholar 

  • Økland B, Bakke A, Hågvar S, Kvamme T (1996) What factors influence the diversity of saproxylic beetles? A multiscaled study from a spruce forest in southern Norway. Biodivers Conserv 5:75–100

    Article  Google Scholar 

  • Otway SJ, Hector A, Lawton JH (2005) Resource dilution effects on specialist insect herbivores in a grassland biodiversity experiment. J Anim Ecol 74:234–240

    Article  Google Scholar 

  • Paletto A, De Meo I, Cantiani P, Ferretti F (2014) Effects of forest management on the amount of deadwood in Mediterranean oak ecosystems. Ann for Sci 71:791–800

    Article  Google Scholar 

  • Pickett STA, White PS (1985) The ecology of natural disturbance and patch dynamics. Academic Press, New York

    Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e9490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ranius T (2006) Measuring the dispersal of saproxylic insects: a key characteristic for their conservation. Popul Ecol 48:177–188

    Article  Google Scholar 

  • Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system. Mol Ecol Notes 7:355–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratnasingham S, Hebert PDN (2013) A DNA-based registry for all animal species: The Barcode Index Number (BIN) System. PLoS ONE 8:e66213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sallé A, Bouget C (2020) Victims or perpetrators: contribution and response of insects to forest diebacks and declines. Ann for Sci 77:104

    Article  Google Scholar 

  • Sallé A, Parmain G, Nusillard B et al (2020) Forest decline differentially affects trophic guilds of canopy-dwelling beetles. Ann for Sci 77:86

    Article  Google Scholar 

  • Sallé A, Cours J, Le Souchu E et al (2021) Climate change alters temperate forest canopies and indirectly reshapes arthropod communities. Front for Glob Change 4:120

    Article  Google Scholar 

  • Samaniego L, Thober S, Kumar R et al (2018) Anthropogenic warming exacerbates European soil moisture droughts. Nat Clim Change 8:421

    Article  Google Scholar 

  • Sangüesa-Barreda G, Camarero JJ, Oliva J et al (2015) Past logging, drought and pathogens interact and contribute to forest dieback. Agric for Meteorol 208:85–94

    Article  Google Scholar 

  • Seibold S, Brandl R, Buse J et al (2015) Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conserv Biol 29:382–390

    Article  PubMed  Google Scholar 

  • Seibold S, Bässler C, Brandl R et al (2016) Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. J Appl Ecol 53:934–943

    Article  Google Scholar 

  • Seibold S, Bässler C, Brandl R et al (2017) An experimental test of the habitat-amount hypothesis for saproxylic beetles in a forested region. Ecology 98:1613–1622

    Article  PubMed  Google Scholar 

  • Seidl R, Thom D, Kautz M et al (2017) Forest disturbances under climate change. Nat Clim Change 7:395–402

    Article  Google Scholar 

  • Senf C, Seidl R (2021a) Storm and fire disturbances in Europe: distribution and trends. Glob Change Biol 27:3605–3619

    Article  CAS  Google Scholar 

  • Senf C, Seidl R (2021b) Mapping the forest disturbance regimes of Europe. Nat Sustain 4:63–70

    Article  Google Scholar 

  • Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian Boreal Forests as an Example. Ecol Bull 11–41

  • Similä M, Kouki J, Martikainen P (2003) Saproxylic beetles in managed and seminatural Scots pine forests: quality of dead wood matters. For Ecol Manag 174:365–381

    Article  Google Scholar 

  • Sire L, Yáñez PS, Wang C et al (2022) Climate-induced forest dieback drives compositional changes in insect communities that are more pronounced for rare species. Commun Biol 5:1–17

    Article  Google Scholar 

  • Speckens V (2021) Effets des dépérissements forestiers sur le bois mort et les dendromicrohabitats, et les communautés de coléoptères saproxyliques associées. Université de Picardie Jules Verne (UPJV), Amiens

  • Stokland JN, Siitonen J, Jonsson BG (2012) Biodiversity in dead wood. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sverdrup-Thygeson A, Gustafsson L, Kouki J (2014) Spatial and temporal scales relevant for conservation of dead-wood associated species: current status and perspectives. Biodivers Conserv 23:513–535

    Article  Google Scholar 

  • Swanson ME, Franklin JF, Beschta RL et al (2011) The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front Ecol Environ 9:117–125

    Article  Google Scholar 

  • Thorn S, Bässler C, Gottschalk T et al (2014) New insights into the consequences of post-windthrow salvage logging revealed by functional structure of saproxylic beetles assemblages. PLoS ONE 9:e101757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thorn S, Bässler C, Svoboda M, Müller J (2017) Effects of natural disturbances and salvage logging on biodiversity—lessons from the Bohemian Forest. For Ecol Manag 388:113–119

    Article  Google Scholar 

  • Thorn S, Förster B, Heibl C et al (2018) Influence of macroclimate and local conservation measures on taxonomic, functional, and phylogenetic diversities of saproxylic beetles and wood-inhabiting fungi. Biodivers Conserv 27:3119–3135

    Article  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  PubMed  Google Scholar 

  • Webb CO, Pitman NCA (2002) Phylogenetic balance and ecological evenness. Syst Biol 51:898–907

    Article  PubMed  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Article  Google Scholar 

Download references

Acknowledgements

First of all, we thank the two reviewers for their valuable contributions to this work. This research is part of the CLIMTREE project, “Ecological and Socioeconomic Impacts of Climate-Induced Tree Dieback in Highland Forests”, within the Belmont Forum call: “Mountains as Sentinels of Change” and was funded by the French National Research Agency (ANR) (ANR-15-MASC-002-01). We are very grateful to Aurélien Sallé for proofreading the manuscript. We are thankful to Benoît Nusillard from INRAE EFNO; Wilfried Heintz, Laurent Burnel, Jérôme Molina and Jérôme Willm from INRAE DYNAFOR; and Grégory Sajdak from CRPF Occitanie for their field work. We also thank Thierry Noblecourt, Fabien Soldati and Thomas Barnouin from the National Centre for Forest Entomology of the ONF; Olivier Rose from the ONF; and Yves Gomy, Olivier Courtin, Benedikt Feldmann and Gianfranco Liberti for their help with species identification. We also thank all of those who helped us in the field: Dominique Micaux, Pierre Caillieux, Vincent Gherra, X. Fraces, Serge Alric, Xavier de Muyser, Francis Dueso, Serge Rumeau, Jean-Marie Quilès, Gilles Vergèz and David Veneau from the ONF; Jérôme Moret, Emmanuel Rouyer, Benoît Lecomte and Jean-Christophe Chabalier from the CRPF Occitanie; forest private owners Jean-Claude Marquis, Gilles Lefrançois, Marc Mesplié, Patrick Ferran, Jean-Baptiste Régné and Gilles Verdier (replacing J.L. Chaire for Hèches); and Denis Sabadie and Vincent Sabadie on the Sault Plateau. We thank Vicki Moore for proofreading the English manuscript.

Funding

This research is part of the project CLIMTREE “Ecological and Socioeconomic Impacts of Climate-Induced Tree Dieback in Highland Forests” within the Belmont Forum call for collaborative research actions: “Mountains as Sentinels of Change”, and was funded by the French National Research Agency (ANR) (ANR-15-MASC-002-01).

Author information

Authors and Affiliations

Authors

Contributions

JC: conceptualisation, data curation, formal analysis, investigation, methodology, software, visualisation, writing—original draft; LS: formal analysis, methodology, writing—reviewing & editing; SL: methodology, writing—reviewing & editing; HM: methodology, writing—reviewing & editing; GP: data curation, writing—reviewing & editing; LL: conceptualisation, data curation, writing—reviewing & editing; CM: data curation; CL-V: conceptualisation, funding acquisition, project administration, supervision, writing—reviewing & editing; CB: conceptualisation, data curation, investigation, methodology, supervision, writing—original draft, writing—reviewing & editing.

Corresponding author

Correspondence to Jérémy Cours.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 677 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cours, J., Sire, L., Ladet, S. et al. Drought-induced forest dieback increases taxonomic, functional, and phylogenetic diversity of saproxylic beetles at both local and landscape scales. Landsc Ecol 37, 2025–2043 (2022). https://doi.org/10.1007/s10980-022-01453-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-022-01453-5

Keywords

Navigation