Skip to main content
Log in

Measuring the dispersal of saproxylic insects: a key characteristic for their conservation

  • Original Article
  • Special feature: effects of anthropogenic habitat changes on plant and animal populations
  • Published:
Population Ecology

Abstract

In the discipline of nature conservation it is important to understand under which circumstances populations can survive by compensating local extinctions with colonizations. Many saproxylic (= wood-dwelling) insect species have declining populations and are regarded as threatened due to low habitat availability in managed forests. Several methods have been used to better understand the dispersal biology and colonization ability of saproxylic insects with declining populations. The present article summarizes and compares the results of such studies. When the same species have been studied using several methods, the results are consistent, but different aspects of dispersal biology are revealed with different methods. Capture-recapture and telemetry are direct methods that can be used to quantify dispersal rate and range in the field. Studies of genetic structure and occupancy patterns are complementary, as they reveal the consequences of dispersals that have taken place over a larger spatial and temporal scale than is possible to study with direct methods. Because colonization, rather than dispersal, is important for population persistence, colonization experiments provide useful information. To obtain information relevant for conservation work, dispersal studies should be conducted on model species that are representative of threatened species. Colonization ability probability differs between common and rare species, and therefore it is important to also study the dispersal of rare species, even if it is more difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baguette M, Petit S, Quéva F (2000) Population spatial structure and migration of three butterfly species within the same habitat network: consequences for conservation. J Appl Ecol 37:100–108

    Article  Google Scholar 

  • Beaudoin-Ollivier L, Bonaccorso F, Aloysius M, Kasiki M (2003) Flight movement of Scapanes australis australis (Boisduval) (Coleoptera: Scarabaeidae: Dynastinae) in Papua New Guinea: a radiotelemetry study. Aust J Entomol 42:367–372

    Article  Google Scholar 

  • Bossart JL, Pashley Prowell D (1998) Genetic estimates of population structure and gene flow: limitations, lessons and new directions. Trends Ecol Evol 13:202–206

    Article  Google Scholar 

  • Brown JH, Kodrick-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449

    Article  Google Scholar 

  • Forsse E (1991) Flight propensity and diapause incidence in five populations of the bark beetle Ips typographus in Scandinavia. Entomol Exp Appl 61:53–57

    Article  Google Scholar 

  • Forsse E, Solbreck C (1985) Migration in the bark beetle Ips typographus L.: duration, timing and height of flights. Z Angew Entomol 100:47–57

    Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, New York

    Google Scholar 

  • Hanski I, Ovaskainen O (2002) Extinction debt at extinction threshold. Conserv Biol 16:666–673

    Article  Google Scholar 

  • Hanski I, Zhang D-Y (1993) Migration, metapopulation dynamics and fugitive co-existence. J Theor Biol 163:491–504

    Article  Google Scholar 

  • Hanski I, Kuussaari M, Nieminen M (1994) Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75:747–762

    Article  Google Scholar 

  • Hanski I, Alho J, Moilanen A (2000) Estimating the parameters of survival and migration of individuals in metapopulations. Ecology 81:239–251

    Article  Google Scholar 

  • Hansson L, Söderström L, Solbreck C (1992) The ecology of dispersal in relation to conservation. In: Hansson L (ed) Ecological principles of nature conservation: applications in temperate and boreal environments. Elsevier Applied Science, London, pp 162–200

    Google Scholar 

  • Hedin J, Ranius T (2002) Using radio telemetry to study dispersal of the beetle Osmoderma eremita, an inhabitant of tree hollows. Comput Electron Agr 35:171–180

    Article  Google Scholar 

  • Hedin J, Ranius T, Nilsson SG, Smith HG (2003) Predicted restricted dispersal in a flying beetle confirmed by telemetry. In: Hedin J (ed) Metapopulation ecology of Osmoderma eremita – dispersal, habitat quality and habitat history. Dissertation. Lund University, Lund, pp 75–81

    Google Scholar 

  • Hill JK, Thomas CD, Lewis OT (1996) Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. J Anim Ecol 65:725–735

    Article  Google Scholar 

  • Holland JD, Bert DG, Fahrig L (2004) Determining the spatial scale of species’ response to habitat. Bioscience 54:229–235

    Article  Google Scholar 

  • Humphry SJ, Linit MJ (1989) Tethered flight of Monochamus carolinensis (Coleoptera: Cerambycidae) with respect to beetle age and sex. Environ Entomol 18:124–126

    Google Scholar 

  • Huxel GR, Hastings A (1999) Habitat loss, fragmentation, and restoration. Restor Ecol 7:309–315

    Article  Google Scholar 

  • Johnson ML, Gaines MS (1990) Evolution of dispersal: theoretical models and empirical tests using birds and mammals. Annu Rev Ecol Syst 21:449–480

    Article  Google Scholar 

  • Jonsell M, Nordlander G (2002) Insects in polypore fungi as indicator species: a comparison between forest sites differing in amounts and continuity of dead wood. For Ecol Manage 157:101–118

    Article  Google Scholar 

  • Jonsell M, Nordlander G, Jonsson M (1999) Colonization patterns of insects breeding in wood-decaying fungi. J Insect Conserv 3:145–161

    Article  Google Scholar 

  • Jonsell M, Schroeder M, Larsson T (2003) The saproxylic beetle Bolitophagus reticulatus: its frequency in managed forests, attraction to volatiles and flight period. Ecography 26:421–428

    Article  Google Scholar 

  • Jonsson M (2003) Colonisation ability of the threatened tenebrionid beetle Oplocephala haemorrhoidalis and its common relative Bolitophagus reticulatus. Ecol Entomol 28:159–167

    Article  MathSciNet  Google Scholar 

  • Jonsson M (2005) Spridningsförmågan hos insekter knutna till klibticka och fnöskticka [Dispersal abilities of insects associated with fruiting bodies of the wood-decaying fungi Fomitopsis pinicola and Fomes fomentarius (In Swedish, with English abstract). Ent Tidskr 126:205–213

    Google Scholar 

  • Jonsson M, Nordlander G (2006) Insect colonisation of fruiting bodies of the wood-decaying fungus Fomitopsis pinicola at different distances from an old-growth forest. Biodiv Conserv 15:295–309

    Article  Google Scholar 

  • Jonsson M, Johannesen J, Seitz A (2003) Comparative genetic structure of the threatened tenebrionid beetle Oplocephala haemorrhoidalis and its common relative Bolitophagus reticulatus. J Insect Conserv 7:111–124

    Article  Google Scholar 

  • Kehler D, Bondrup-Nielsen S (1999) Effects of isolation on the occurrence of a fungivorous forest beetle, Bolitotherus cornutus, at different spatial scales in fragmented and continuous forests. Oikos 84:35–43

    Article  Google Scholar 

  • Kindvall O (1995) The impact of extreme weather on habitat preference and survival in a metapopulation of the bush cricket Metrioptera bicolor in Sweden. Biol Conserv 73:51–58

    Article  Google Scholar 

  • Knutsen H, Rukke BA, Jorde P-E, Ims RA (2000) Genetic differentiation among populations of the beetle Bolitophagus reticulatus (Coleoptera: Tenebrionidae) in a fragmented and continuous landscape. Heredity 84:667–676

    Article  PubMed  CAS  Google Scholar 

  • Koenig WD, Van Vuren D, Hooge PN (1996) Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol Evol 11:514–517

    Article  Google Scholar 

  • Kotiaho JS, Kaitala V, Komonen A, Päivinen J (2005) Predicting the risk of extinction from shared ecological characteristics. Proc Natl Acad Sci USA 102:1963–1967

    Article  PubMed  ADS  CAS  Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • Levins R (1970) Extinction. In: Gerstenhaber M (ed) Some mathematical problems in biology. American Mathematical Society, Providence, pp 75–107

    Google Scholar 

  • Mennechez G, Schtickzelle N, Baguette M (2003) Metapopulation dynamics of the bog fritillary butterfly: comparison of demographic parameters and dispersal between a continuous and a highly fragmented landscape. Land Ecol 18:279–291

    Article  Google Scholar 

  • Mueller UG, Wolfenbarger L (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389–394

    Article  PubMed  Google Scholar 

  • Nève G, Baraseud B, Hughes R, Aubert J, Descimon H, Lebrun P, Baguette M (1996) Dispersal, colonization power and metapopulation structure in the vulnerable butterfly Proclossiana eunomia (Lepidoptera: Nymphalidae). J Appl Ecol 33:14–22

    Article  Google Scholar 

  • Nilssen AC (1984) Long-range aerial dispersal of bark beetles and bark weevils (Coleoptera, Scolytidae and Curculionidae) in northern Finland. Ann Entomol Fenn 50:37–42

    Google Scholar 

  • Nilsson T (1997) Metapopulation dynamics in the black tinder fungus beetle, Bolitophagus reticulatus. In: Spatial population dynamics of the black tinder fungus beetle, Bolitophagus reticulatus (Coleoptera: Tenebrionidae). Dissertation, Uppsala University, Uppsala

  • Nilsson SG, Baranowski R (1994) Indikatorer på jätteträdskontinuitet – svenska förekomster av knäppare som är beroende av grova, levande träd [Indicators of megatree continuity – Swedish distribution of click beetles (Coleoptera, Elateridae) dependent on hollow trees (In Swedish, with an English abstract)]. Entomol Tidskr 115:81–97

    Google Scholar 

  • Ovaskainen O (2004) Habitat-specific movement parameters estimated using mark–recapture data and a diffusion model. Ecology 85:242–257

    Article  Google Scholar 

  • Peltonen A, Hanski I (1991) Patterns of island occupancy explained by colonization and extinction rates in shrews. Ecology 72:1698–1708

    Article  Google Scholar 

  • Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661

    Article  Google Scholar 

  • Ranius T (2000) Minimum viable metapopulation size of a beetle, Osmoderma eremita, living in tree hollows. Anim Conserv 3:37–43

    Article  Google Scholar 

  • Ranius T (2001) Constancy and asynchrony of Osmoderma eremita populations in tree hollows. Oecologia 126:208–215

    Article  Google Scholar 

  • Ranius T (2002a) Influence of stand size and quality of tree hollows on saproxylic beetles in Sweden. Biol Conserv 103:85–91

    Article  Google Scholar 

  • Ranius T (2002b) Population ecology and conservation of beetles and pseudoscorpions living in hollow oaks in Sweden. Anim Biodivers Conserv 25.1:53–68

    Google Scholar 

  • Ranius T, Douwes P (2002) Genetic structure of two pseudoscorpion species living in tree hollows in Sweden. Anim Biodivers Conserv 25.2:67–75

    Google Scholar 

  • Ranius T, Hedin J (2001) The dispersal rate of a beetle, Osmoderma eremita, living in tree hollows. Oecologia 126:363–370

    Article  Google Scholar 

  • Ranius T, Jansson N (2002) A comparison of three methods to survey saproxylic beetles in hollow oaks. Biodivers Conserv 11:1759–1771

    Article  Google Scholar 

  • Ranius T, Kindvall O (2006) Extinction risk of wood-living model species in forest landscapes as related to forest history and conservation strategy. Land Ecol (in press)

  • Ranius T, Wilander P (2000) Occurrence of Larca lata H.J. Hansen (Pseudoscorpionida: Garypidae) and Allechernes wideri C.L. Koch (Pseudoscorpionida: Chernetidae) in tree hollows in relation to habitat quality and density. J Insect Conserv 4:23–31

    Article  Google Scholar 

  • Roff DA (1994) Habitat persistence and the evolution of wing dimorphism in insects. Am Nat 144:772–798

    Article  Google Scholar 

  • Roslin T (2000) Dung beetle movements at two spatial scales. Oikos 91:323–335

    Article  Google Scholar 

  • Rukke BA, Midtgaard F (1998) The importance of scale and spatial variables for the fungivorous beetle Bolitophagus reticulatus (Coleoptera, Tenebrionidae) in a fragmented forest landscape. Ecography 21:561–572

    Article  Google Scholar 

  • Schneider C (2003) The influence of spatial scale on quantifying insect dispersal: an analysis of butterfly data. Ecol Entomol 28:252–256

    Article  Google Scholar 

  • Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 49:11–41

    Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  PubMed  ADS  CAS  Google Scholar 

  • Southwood TRE (1962) Migration of terrestrial arthropods in relation to habitat. Biol Rev Camb Philos Soc 37:171–214

    Article  Google Scholar 

  • Speight MCD (1989) Saproxylic invertebrates and their conservation. Council of Europe, Strasbourg

    Google Scholar 

  • Sprecher-Uebersax E, Durrer H (2001) Verhaltensstudien beim Hirschkäfer mittels Telemetrie und Videoaufzeichnungen (Coleoptera, Lucanus cervus L.). Mitt Naturforsch Gesellsch Basel 5:161–182

    Google Scholar 

  • Starzomski BM, Bondrup-Nielsen S (2002) Analysis of movement and the consequence for metapopulation structure of the forked fungus beetle, Bolitotherus cornutus Panzer (Tenebrionidae). Ecoscience 9:20–27

    Google Scholar 

  • Sverdrup-Thygeson A, Midtgaard F (1998) Fungus-infected trees as islands in boreal forest: spatial distribution of the fungivorous beetle Bolitophagus reticulatus (Coleoptera, Tenebrionidae). Ecoscience 5:486–493

    Google Scholar 

  • Thomas CD (2000) Dispersal and extinction in fragmented landscapes. Proc R Soc Lond Ser B 267:139–145

    Article  CAS  Google Scholar 

  • Thomas CD, Thomas JA, Warren MS (1992) Distributions of occupied and vacant butterfly habitats in fragmented landscapes. Oecologia 92:563–567

    Article  Google Scholar 

  • Togashi K (1990) A field experiment on dispersal of newly emerged adults of Monochamus alternatus (Coleoptera: Cerambycidae). Res Popul Ecol 32:1–13

    Article  Google Scholar 

  • Whitlock MC (1992) Nonequilibrium population structure in forked fungus beetles: extinction, colonization, and the genetic variance among populations. Am Nat 139:952–970

    Article  Google Scholar 

Download references

Acknowledgments

Barbara Ekbom, Markus Franzén, Mats Jonsell, Mattias Jonsson, Stig Larsson, and Martin Schroeder have given valuable comments to the manuscript. Jens Johannesson, Mats Jonsell, Mattias Jonsson and Niklas Jönsson have kindly provided photographs and graphs. This work has been done within the project “Predicting extinction risks for threatened wood-living insects in dynamic landscapes” financed by The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning. We were permitted to reprint figures from Computers and Electronics in Agriculture (copyright by Elsevier), Entomologisk Tidskrift and Animal Biodiversity & Conservation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ranius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranius, T. Measuring the dispersal of saproxylic insects: a key characteristic for their conservation. Popul Ecol 48, 177–188 (2006). https://doi.org/10.1007/s10144-006-0262-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-006-0262-3

Keywords

Navigation