Skip to main content

Advertisement

Log in

Spatial scaling of land use/land cover and ecosystem services across urban hierarchical levels: patterns and relationships

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Land use/land cover (LULC) patterns seriously affect ecosystem services (ESs), especially in highly developed urban agglomerations. Exploring how LULC and ESs change spatially across urban hierarchical levels and understanding the possible mechanisms can promote the sustainable planning of urban landscapes.

Objectives

By mapping the spatial patterns of LULC and ESs in the three largest urban agglomerations of China, this study aimed to (1) identify the scaling relations of LULC and ESs across different urban hierarchical levels, (2) explore the possible mechanisms of these two types of spatial scaling, and (3) examine how the scaling relations of ESs relate to LULC and the policy implications.

Methods

Based on LULC, we used the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model and other biophysical models to quantify ES indicators. Then, scalograms were used to quantify the scaling relations of LULC and ESs with respect to changing spatial extent.

Results

Developed land and cropland exhibited the most predictable responses with changing spatial extent. Compared to other ESs, provisioning services were the most predictable. The predictable scaling relations of ESs at different urban hierarchical levels fell into two general types: power laws at the city proper level and exponential relationships at the metropolitan region and urban agglomeration levels.

Conclusions

The scaling relations of both LULC and ESs varied across urban hierarchical levels. The spatial scaling of ESs was closely related to LULC patterns. Integrating the scaling relations of ESs into land use planning can help decision-makers formulate multi-scale landscape conservation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alhamad MN, Alrababah MA, Feagin RA, Gharaibeh A (2011) Mediterranean drylands: the effect of grain size and domain of scale on landscape metrics. Ecol Indic 11:611–621

    Article  Google Scholar 

  • Arcaute E, Hatna E, Ferguson P, Youn H, Johansson A, Batty M (2015) Constructing cities, deconstructing scaling laws. J R Soc Interface 12(102):20140745

    Article  PubMed  PubMed Central  Google Scholar 

  • Bagstad KJ, Cohen E, Ancona ZH, McNulty SG, Sun G (2018) The sensitivity of ecosystem service models to choices of input data and spatial resolution. Appl Geogr 93:25–36

    Article  Google Scholar 

  • Batty M (2008) The size, scale, and shape of cities. Science 319(5864):769–771

    Article  CAS  PubMed  Google Scholar 

  • Baumeister CF, Baumeister T, Plieninger T, Schraml U (2020) Exploring cultural ecosystem service hotspots: linking multiple urban forest features with public participation mapping data. Urban for Urban Green 48:126561

    Article  Google Scholar 

  • Benra F, Frutos AD, Gaglio M, Álvarez-Garretón C, Felipe-Lucia M, Bonn A (2021) Mapping water ecosystem services: evaluating InVEST model predictions in data scarce regions. Environ Modell Softw 3:104982

    Article  Google Scholar 

  • Bettencourt LM (2013) The origins of scaling in cities. Science 340(6139):1438–1441

    Article  CAS  PubMed  Google Scholar 

  • Bettencourt LM, Lobo J (2016) Urban scaling in Europe. J R Soc Interface 13(116):20160005

    Article  PubMed  PubMed Central  Google Scholar 

  • Bettencourt LM, Lobo J, Helbing D, Kühnert C, West GB (2007) Growth, innovation, scaling, and the pace of life in cities. Proc Natl Acad Sci USA 104(17):7301–7306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bettencourt LM, Lobo J, Strumsky D, West GB (2010) Urban scaling and its deviations: revealing the structure of wealth, innovation and crime across cities. PLoS ONE 5:e13541

    Article  PubMed  PubMed Central  Google Scholar 

  • Bian H, Gao J, Wu J, Sun X, Du Y (2020) Hierarchical analysis of landscape urbanization and its impacts on regional sustainability: a case study of the Yangtze River Economic Belt of China. J Clean Prod 279:123267

    Article  Google Scholar 

  • Bolliger J, Bättig MB, Gallati J, Kläy A, Stauffacher M, Kienast F (2011) Landscape multifunctionality: a powerful concept to identify effects of environmental change. Reg Environ Change 11:203–206

    Article  Google Scholar 

  • Brock WA (1999) Scaling in economics: a reader’s guide. Ind Corp Change 8(3):409–446

    Article  Google Scholar 

  • Brunet L, Tuomisaari J, Lavorel S, Crouzat E, Bierry A, Peltola T, Arpin I (2018) Actionable knowledge for land use planning: making ecosystem services operational. Land Use Policy 72:27–34

    Article  Google Scholar 

  • Chen G, Li X, Liu X, Chen Y, Liang X, Leng J, Xu X, Liao W, Qiu Y, Wu Q, Huang K (2020) Global projections of future urban land expansion under shared socioeconomic pathways. Nat Commun 11:1–12

    Google Scholar 

  • Cong RG, Ekroos J, Smith HG, Brady MV (2016) Optimizing intermediate ecosystem services in agriculture using rules based on landscape composition and configuration indices. Ecol Econ 128:214–223

    Article  Google Scholar 

  • D’Amour C, Reitsma F, Baiocchi G, Barthel S, Güneralp B, Erb K, Haberl H, Creutzig F, Seto KC (2016) Future urban land expansion and implications for global croplands. Proc Natl Acad Sci USA 114(34):8939–8944

    Article  Google Scholar 

  • Daneshi A, Brouwer R, Najafinejad A, Panahi M, Zarandian A, Maghsood FF (2021) Modelling the impacts of climate and land use change on water security in a semi-arid forested watershed using InVEST. J Hydrol 593:125621

    Article  Google Scholar 

  • Department of Urban Surveys of National Bureau of Statistics of China (DUSNB) (2018) China city statistics yearbook 2019. China Statistics Press, Beijing (in Chinese)

    Google Scholar 

  • Dramstad WE, Olson JD, Forman RTT (1996) Landscape ecology principles in landscape architecture and land-use planning. Island Press, Washington DC

    Google Scholar 

  • Du S, Wang Q, Guo L (2014) Spatially varying relationships between land-cover change and driving factors at multiple sampling scales. J Environ Manag 137:101–110

    Article  Google Scholar 

  • Du Y, Sun T, Peng J, Fang K, Liu Y, Yang Y, Wang Y (2018) Direct and spillover effects of urbanization on PM2.5 concentrations in China’s top three urban agglomerations. J Clean Prod 190:72–83

    Article  CAS  Google Scholar 

  • Duarte GT, Santos PM, Cornelissen TG, Ribeiro MC, Paglia AP (2018) The effects of landscape patterns on ecosystem services: meta-analyses of landscape services. Landsc Ecol 33:1247–1257

    Article  Google Scholar 

  • Fang C, Yu D (2017) Urban agglomeration: an evolving concept of an emerging phenomenon. Landsc Urban Plan 162:126–136

    Article  Google Scholar 

  • Fisher JI, Hurtt GC, Thomas RQ, Chambers JQ (2008) Clustered disturbances lead to bias in large-scale estimates based on forest sample plots. Ecol Lett 11:554–563

    Article  PubMed  Google Scholar 

  • Forgione HM, Pregitzer CC, Charlop-Powers S, Gunther B (2016) Advancing urban ecosystem governance in New York City: shifting towards a unified perspective for conservation management. Environ Sci Policy 62:127–132

    Article  Google Scholar 

  • Frazier AE (2016) Surface metrics: scaling relationships and downscaling behavior. Landsc Ecol 31:351–363

    Article  Google Scholar 

  • Fuller RA, Gaston KJ (2009) The scaling of green space coverage in European cities. Biol Lett 5(3):352–355

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao J, Yu ZW, Wang LC, Vejre H (2019) Suitability of regional development based on ecosystem service benefits and losses: a case study of the Yangtze River Delta urban agglomeration, China. Ecol Indic 107:105579

    Article  Google Scholar 

  • Goldstein JH, Caldarone G, Duarte TK, Ennaanay D, Hannahs N, Mendoza G, Polasky S, Wolny S, Daily GC (2012) Integrating ecosystem-service tradeoffs into land-use decisions. Proc Natl Acad Sci USA 109(19):7565–7570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grafius DR, Corstanje R, Warren PH, Evans KL, Hancock S, Harris JA (2016) The impact of land use/land cover scale on modelling urban ecosystem services. Landsc Ecol 31:1509–1522

    Article  Google Scholar 

  • Gu C (2019) Urbanization: processes and driving forces. Sci China Earth Sci 62(9):1351–1360

    Article  CAS  Google Scholar 

  • Hamel P, Chaplin-Kramer R, Sim S, Mueller C (2015) A new approach to modeling the sediment retention service (InVEST 3.0): case study of the Cape Fear catchment, North Carolina, USA. Sci Total Environ 524–525:166–177

    Article  PubMed  Google Scholar 

  • Hasan SS, Zhen L, Miah MG, Ahamed T, Samie A (2020) Impact of land use change on ecosystem services: a review. Environ Dev 34:100527

    Article  Google Scholar 

  • Hein L, van Koppen K, de Groot RS, van Ierland EC (2006) Spatial scales, stakeholders and the valuation of ecosystem services. Ecol Econ 57:209–228

    Article  Google Scholar 

  • Hu M, Li Z, Wang Y, Jiao M, Li M, Xia B (2019) Spatio-temporal changes in ecosystem service value in response to land-use/cover changes in the Pearl River Delta. Resour Conserv Recycl 149:106–114

    Article  Google Scholar 

  • Jomnonkwao S, Uttra S, Ratanavaraha V (2020) Forecasting road traffic deaths in Thailand: applications of time-series, curve estimation, multiple linear regression, and path analysis models. Sustainability 12(1):395

    Article  Google Scholar 

  • Karimi JD, Corstanje R, Harris JA (2021) Understanding the importance of landscape configuration on ecosystem service bundles at a high resolution in urban landscapes in the UK. Landsc Ecol 36:2007–2024

    Article  Google Scholar 

  • Kedron PJ, Frazier AE, Ovando-Montejo GA, Wang J (2018) Surface metrics for landscape ecology: a comparison of landscape models across ecoregions and scales. Landsc Ecol 33:1489–1504

    Article  Google Scholar 

  • Korkanç SY, Dorum G (2019) The nutrient and carbon losses of soils from different land cover systems under simulated rainfall conditions. CATENA 172:203–211

    Article  Google Scholar 

  • Kuang W (2020a) 70 years of urban expansion across China: trajectory, pattern, and national policies. Sci Bull 65:1970–1974

    Article  Google Scholar 

  • Kuang W (2020b) National urban land-use/cover change since the beginning of the 21st century and its policy implications in China. Land Use Policy 97:104747

    Article  Google Scholar 

  • Kuang W, Chi W, Lu D, Dou Y (2014) A comparative analysis of megacity expansions in China and the U.S.: patterns, rates and driving forces. Landsc Urban Plan 132:121–135

    Article  Google Scholar 

  • Lamy T, Liss KN, Gonzalez A, Bennett EM (2016) Landscape structure affects the provision of multiple ecosystem services. Environ Res Lett 11:124017

    Article  Google Scholar 

  • Lan X, Tang H, Liang H (2017) A theoretical framework for researching cultural ecosystem service flows in urban agglomerations. Ecosyst Serv 28:95–104

    Article  Google Scholar 

  • Lan T, Shao G, Xu Z, Tang L, Sun L (2021) Measuring urban compactness based on functional characterization and human activity intensity by integrating multiple geospatial data sources. Ecol Indic 121:107177

    Article  Google Scholar 

  • Lavorel S, Rey P, Grigulis K, Zawada M, Byczek C (2020) Interactions between outdoor recreation and iconic terrestrial vertebrates in two French alpine national parks. Ecosyst Serv 45:101155

    Article  Google Scholar 

  • Lawler J, Lewis D, Nelson E, Plantinga A, Polasky S, Withey J, Helmers D, Martinuzzi S, Pennington D, Radeloff V (2014) Projected land-use change impacts on ecosystem services in the United States. Proc Natl Acad Sci USA 111(20):7492–7497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei J, Wang S, Wu J, Wang J, Xiong X (2021) Land-use configuration has significant impacts on water-related ecosystem services. Ecol Eng 160:106133

    Article  Google Scholar 

  • Leitão AB, Ahern J (2002) Applying landscape ecological concepts and metrics in sustainable landscape planning. Landsc Urban Plan 59:65–93

    Article  Google Scholar 

  • Li G, Li F (2019) Urban sprawl in China: differences and socioeconomic drivers. Sci Total Environ 673:367–377

    Article  CAS  PubMed  Google Scholar 

  • Li F, Zhou T (2019) Effects of urban form on air quality in China: an analysis based on the spatial autoregressive model. Cities 89:130–140

    Article  Google Scholar 

  • Li LF, Wu J, Wilhelm M, Ritz B (2012) Use of generalized additive models and cokriging of spatial residuals to improve land-use regression estimates of nitrogen oxides in Southern California. Atmos Environ 55:220–228

    Article  CAS  PubMed Central  Google Scholar 

  • Li C, Li J, Wu J (2013) Quantifying the speed, growth modes, and landscape pattern changes of urbanization: a hierarchical patch dynamics approach. Landsc Ecol 28(10):1875–1888

    Article  Google Scholar 

  • Li H, Peng J, Liu Y, Hu Y (2017) Urbanization impact on landscape patterns in Beijing City, China: a spatial heterogeneity perspective. Ecol Indic 82:50–60

    Article  Google Scholar 

  • Li W, Hai X, Han L, Mao J, Tian M (2020) Does urbanization intensify regional water scarcity? Evidence and implications from a megaregion of China. J Clean Prod 244:118592

    Article  Google Scholar 

  • Lin JY, Li X (2019) Large-scale ecological red line planning in urban agglomerations using a semi-automatic intelligent zoning method. Sustain Cities Soc 46:101410

    Article  Google Scholar 

  • Liu L, Xu X, Chen X (2015) Assessing the impact of urban expansion on potential crop yield in China during 1990–2010. Food Secur 7:33–43

    Article  Google Scholar 

  • Liu FY, Matsuno S, Malekian R, Yu J, Li ZX (2016) A vector auto regression model applied to real estate development investment: a statistic analysis. Sustainability 8:1082

    Article  Google Scholar 

  • Liu Y, Zhang X, Kong X, Wang R, Chen L (2018) Identifying the relationship between urban land expansion and human activities in the Yangtze River Economic Belt, China. Appl Geogr 94:163–177

    Article  Google Scholar 

  • Liu W, Zhan J, Zhao F, Yan H, Zhang F, Wei X (2019) Impacts of urbanization-induced land-use changes on ecosystem services: a case study of the Pearl River Delta Metropolitan Region, China. Ecol Indic 98:228–238

    Article  Google Scholar 

  • Liu Y, Zhang X, Pan X, Ma X, Tang M (2020) The spatial integration and coordinated industrial development of urban agglomerations in the Yangtze River Economic Belt, China. Cities 104:102801

    Article  Google Scholar 

  • Lobo J, Bettencourt LM, Smith ME, Ortman S (2020) Settlement scaling theory: bridging the study of ancient and contemporary urban systems. Urban Stud 57(4):731–747

    Article  Google Scholar 

  • Lu D, Mao W, Yang D, Zhao J, Xu J (2018) Effects of land use and landscape pattern on PM2.5 in Yangtze River Delta, China. Atmos Pollut Res 9(4):705–713

    Article  CAS  Google Scholar 

  • Luo Q, Zhang X, Li Z, Yang M, Lin Y (2018) The effects of China’s ecological control line policy on ecosystem services: the case of Wuhan City. Ecol Indic 93:292–301

    Article  Google Scholar 

  • Luo Q, Zhou J, Li Z, Yu B (2020) Spatial differences of ecosystem services and their driving factors: a comparation analysis among three urban agglomerations in China’s Yangtze River Economic Belt. Sci Total Environ 725:138452

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, He C, Wu J (2016a) Behind the rapid expansion of urban impervious surfaces in China: major influencing factors revealed by a hierarchical multiscale analysis. Land Use Policy 59:434–445

    Article  Google Scholar 

  • Ma Q, Wu J, He C (2016b) A hierarchical analysis of the relationship between urban impervious surfaces and land surface temperatures: spatial scale dependence, temporal variations, and bioclimatic modulation. Landsc Ecol 31(5):1139–1153

    Article  Google Scholar 

  • Ma Q, Wu J, He C, Hu G (2019) Reprint of “Spatial scaling of urban impervious surfaces across evolving landscapes: from cities to urban regions.” Landsc Urban Plan 187:132–144

    Article  Google Scholar 

  • Ma W, Jiang G, Chen Y, Qu Y, Zhou T, Li W (2020) How feasible is regional integration for reconciling land use conflicts across the urban–rural interface? Evidence from Beijing–Tianjin–Hebei metropolitan region in China. Land Use Policy 92:104433

    Article  Google Scholar 

  • Massada AB, Radeloff VC (2010) Two multi-scale contextual approaches for mapping spatial pattern. Landsc Ecol 25:711–725

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Mitchell MGE, Bennett EM, Gonzalez A (2015) Strong and nonlinear effects of fragmentation on ecosystem service provision at multiple scales. Environ Res Lett 10:094014

    Article  Google Scholar 

  • Momblanch A, Connor JD, Crossman ND, Paredes-Arquiola J, Andreu J (2016) Using ecosystem services to represent the environment in hydro-economic models. J Hydrol 522:95–109

    Google Scholar 

  • Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron D, Chan KMA, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E, Naidoo R, Ricketts TH, Shaw M (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7(1):4–11

    Article  Google Scholar 

  • Newman MEJ (2005) Power laws, Pareto distributions and Zipf’s law. Contemp Phys 46:323–351

    Article  Google Scholar 

  • Nikodinoska N, Paletto A, Pastorella F, Granvik M, Franzese PP (2018) Assessing, valuing and mapping ecosystem services at city level: the case of Uppsala (Sweden). Ecol Model 121:107028

    Google Scholar 

  • Normile D (2016) China rethinks cities. Science 352(6288):916–918

    Article  CAS  PubMed  Google Scholar 

  • O’Neill RV, Deangelis DL, Waide JB, Allen GE (1986) A hierarchical concept of ecosystems. Princeton University Press, New Jersey

    Google Scholar 

  • Patra S, Sahoo S, Mishra P, Mahapatra SC (2018) Impacts of urbanization on land use/cover changes and its probable implications on local climate and groundwater level. J Urban Manag 7(2):70–84

    Article  Google Scholar 

  • Peng J, Liu Y, Liu Z, Yang Y (2017) Mapping spatial non-stationarity of human-natural factors associated with agricultural landscape multifunctionality in Beijing–Tianjin–Hebei region, China. Agric Ecosyst Environ 246:221–233

    Article  Google Scholar 

  • Pickard BR, Berkel DV, Petrasova A, Meentemeyer RK (2017) Forecasts of urbanization scenarios reveal trade-offs between landscape change and ecosystem services. Landsc Ecol 32:617–634

    Article  Google Scholar 

  • Poku-Boansi M (2021) Contextualizing urban growth, urbanisation and travel behaviour in Ghanaian cities. Cities 110:103083

    Article  Google Scholar 

  • Redhead JW, Stratford C, Sharps K, Jones L, Ziv G, Clarke D, Oliver TH, Bullock JM (2016) Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci Total Environ 569–570:1418–1426

    Article  PubMed  Google Scholar 

  • Ribeiro FL, Meirelles J, Netto VM, Neto CR, Baronchelli A (2020) On the relation between transversal and longitudinal scaling in cities. PLoS ONE 15(5):1–20

    Article  Google Scholar 

  • Rieb JT, Bennett EM (2020) Landscape structure as a mediator of ecosystem service interactions. Landsc Ecol 35:2863–2880

    Article  Google Scholar 

  • Robinson DT, Brown DG, Currie WS (2009) Modelling carbon storage in highly fragmented and human-dominated landscapes: linking land-cover patterns and ecosystem models. Ecol Model 220(9):1325–1338

    Article  CAS  Google Scholar 

  • Rodríguez-Caballero E, Cantón Y, Chamizo S, Lázaro R, Escudero A (2013) Soil loss and runoff in semiarid ecosystems: a complex interaction between biological soil crusts, micro-topography, and hydrological drivers. Ecosystems 16:529–546

    Article  Google Scholar 

  • Seto KC, Reenberg A, Boone CG, Fragkias M, Haase D, Langanke T, Marcotullio P, Munroe DK, Olah B, Simon D (2012) Urban land teleconnections and sustainability. Proc Natl Acad Sci USA 109(20):7687–7692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp R, Douglass J, Wolny S, Arkema K, Bernhardt J, Bierbower W, Chaumont N, Denu D, Fisher D, Glowinski K, Griffin R, Guannel G, Guerry A, Johnson J, Hamel P, Kennedy C, Kim CK, Lacayo M, Lonsdorf E, Mandle L, Rogers L, Silver J, Toft J, Verutes G, Vogl AL, Wood S, Wyatt K (2020) InVEST 3.8.9.post9+ug.ga009fc0 user’s guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund

  • Shen J, Li S, Liang Z, Liu L, Li D, Wu S (2020) Exploring the heterogeneity and nonlinearity of trade-offs and synergies among ecosystem services bundles in the Beijing-Tianjin-Hebei urban agglomeration. Ecosyst Serv 43:101103

    Article  Google Scholar 

  • Shoemaker DA, BenDor TK, Meentemeyer RK (2019) Anticipating trade-offs between urban patterns and ecosystem service production: scenario analyses of sprawl alternatives for a rapidly urbanizing region. Comput Environ Urban 74:114–125

    Article  Google Scholar 

  • Smith P, Adams J, Beerling DJ, Beringer T, Calvin KV, Fuss S, Griscom B, Hagemann N, Kammann C, Kraxner F, Minx JC, Popp A, Renforth P, Luis J, Vicente V, Keesstra S (2019) Land-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goals. Annu Rev Environ Resour 44:255–286

    Article  Google Scholar 

  • Spence AJ (2009) Scaling in biology. Curr Biol 19:R57–R61

    Article  CAS  PubMed  Google Scholar 

  • Stokes EC, Seto KC (2019) Characterizing and measuring urban landscapes for sustainability. Environ Res Lett 14:045002

    Article  Google Scholar 

  • Sun W, Shao Q, Liu J, Zhai J (2014) Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. CATENA 121:151–163

    Article  Google Scholar 

  • Sun X, Lu ZM, Li F, Crittenden JC (2018) Analyzing spatio-temporal changes and trade-offs to support the supply of multiple ecosystem services in Beijing, China. Ecol Indic 94:117–129

    Article  Google Scholar 

  • Sun X, Tan X, Chen K, Song S, Zhu X, Hou D (2020) Quantifying landscape-metrics impacts on urban green-spaces and water-bodies cooling effect: the study of Nanjing, China. Urban for Urban Green 55:126838

    Article  Google Scholar 

  • Swenson JJ, Franklin J (2000) The effects of future urban development on habitat fragmentation in the Santa Monica Mountains. Landsc Ecol 15:713–730

    Article  Google Scholar 

  • Tang J, Li Y, Cui S, Xu L, Ding S, Nie W (2020) Linking land-use change, landscape patterns, and ecosystem services in a coastal watershed of southeastern China. Glob Ecol Conserv 23:e01177

    Article  Google Scholar 

  • Tao Y, Zhang Z, Ou WX, Guo J, Pueppke SG (2020) How does urban form influence PM2.5 concentrations: Insights from 350 different-sized cities in the rapidly urbanizing Yangtze River Delta region of China, 1998–2015. Cities 98:102581

    Article  Google Scholar 

  • Verburg PH, de Groot WT, Veldkamp AJ (2003) Methodology for multi-scale land-use change modelling: concepts and challenges. Global environmental change and land use. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0335-2_2

    Book  Google Scholar 

  • Viglizzo EF, Paruelo JM, Laterra P, Jobbágy EG (2012) Ecosystem service evaluation to support land-use policy. Agric Ecosyst Environ 154:78–84

    Article  Google Scholar 

  • Wang LZ, Omrani H, Zhao Z, Francomano D, Li K, Pijanowski B (2019a) Analysis on urban densification dynamics and future modes in southeastern Wisconsin, USA. PLoS ONE 14(3):0211964

    Article  Google Scholar 

  • Wang Z, Liang L, Sun Z, Wang X (2019b) Spatiotemporal differentiation and the factors influencing urbanization and ecological environment synergistic effects within the Beijing-Tianjin-Hebei urban agglomeration. J Environ Manag 243:227–239

    Article  Google Scholar 

  • Wang Z, Zhang S, Peng Y, Wu C, Lv Y, Xiao K, Zhao J, Qian G (2020) Impact of rapid urbanization on the threshold effect in the relationship between impervious surfaces and water quality in Shanghai, China. Environ Pollut 267:115569

    Article  CAS  PubMed  Google Scholar 

  • Wu J (1999) Hierarchy and scaling: extrapolating information along a scaling ladder. Can J Remote Sens 25(4):367–380

    Article  Google Scholar 

  • Wu J (2004) Effects of changing scale on landscape pattern analysis: scaling relations. Landsc Ecol 19:125–138

    Article  Google Scholar 

  • Wu J, David JL (2002) A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications. Ecol Model 153(1):7–26

    Article  Google Scholar 

  • Wu J, Li H (2006) Perspectives and methods of scaling. In: Wu J, Jones B, Li H, Loucks OL (eds) Scaling and uncertainty analysis in ecology. Springer, Dordrecht, pp 17–44

    Chapter  Google Scholar 

  • Wu J, Shen WJ, Sun WZ, Tueller PT (2002) Empirical patterns of the effects of changing scale on landscape metrics. Landsc Ecol 17:761–782

    Article  Google Scholar 

  • Wu J, Jenerette GD, Buyantuyev A, Redman CL (2011) Quantifying spatiotemporal patterns of urbanization: the case of the two fastest growing metropolitan regions in the United States. Ecol Complex 8(1):1–8

    Article  Google Scholar 

  • Wu Q, Tan JX, Guo FX, Li HQ, Chen SB, Jiang S (2020a) Multi-scale identification of urban landscape structure based on two-dimensional wavelet analysis: the case of metropolitan Beijing, China. Ecol Complex 43:100832

    Article  Google Scholar 

  • Wu R, Li Z, Wang S (2020b) The varying driving forces of urban land expansion in China: insights from a spatial-temporal analysis. Sci Total Environ 8:142591

    Google Scholar 

  • Xie H, He Y, Xie X (2017) Exploring the factors influencing ecological land change for China’s Beijing–Tianjin–Hebei region using big data. J Clean Prod 142:677–687

    Article  Google Scholar 

  • Xing L, Zhu Y, Wang J (2021) Spatial spillover effects of urbanization on ecosystem services value in Chinese cities. Ecol Indic 121:107028

    Article  Google Scholar 

  • Xu Q, Dong Y, Yang R (2018) Influence of land urbanization on carbon sequestration of urban vegetation: a temporal cooperativity analysis in Guangzhou as an example. Sci Total Environ 635:26–34

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Zhao S, Liu S (2020) Spatial scaling of multiple landscape features in the conterminous United States. Landsc Ecol 35:223–247

    Article  Google Scholar 

  • Yang D, Liu W, Tang L, Chen L, Li X, Xu X (2019a) Estimation of water provision service for monsoon catchments of South China: applicability of the InVEST model. Landsc Urban Plan 182:133–143

    Article  Google Scholar 

  • Yang J, Yang J, Luo X, Huang C (2019b) Impacts by expansion of human settlements on nature reserves in China. J Environ Manag 248:109233

    Article  Google Scholar 

  • Yee SH, Paulukonis E, Simmons C, Russell M, Fulford R, Harwell L, Smith LM (2021) Projecting effects of land use change on human well-being through changes in ecosystem services. Ecol Model 440:109358

    Article  Google Scholar 

  • Yu W, Zhou W (2017) The spatiotemporal pattern of urban expansion in China: a comparison study of three urban megaregions. Remote Sens 9:45

  • Yu J, Zhou K, Yang S (2019) Land use efficiency and influencing factors of urban agglomerations in China. Land Use Policy 88:104143

    Article  Google Scholar 

  • Zhang X, Zhong T, Wang K, Cheng Z (2009) Scaling of impervious surface area and vegetation as indicators to urban land surface temperature using satellite data. Int J Remote Sens 30(4):841–859

    Article  Google Scholar 

  • Zhang D, Huang Q, He C, Wu J (2017) Impacts of urban expansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China: a scenario analysis based on the shared socioeconomic pathways. Resour Conserv Recycl 125:115–130

    Article  Google Scholar 

  • Zhang P, Kohli D, Sun Q, Zhang Y, Liu S, Sun D (2020) Remote sensing modeling of urban density dynamics across 36 major cities in China: fresh insights from hierarchical urbanized space. Landsc Urban Plan 203:103896

    Article  Google Scholar 

  • Zhao S, Liu S (2014) Scale criticality in estimating ecosystem carbon dynamics. Glob Change Biol 20:2240–2251

    Article  Google Scholar 

  • Zhao S, Liu S, Xu C, Yuan W, Sun Y, Yan W, Zhao M, Henebry GM, Fang J (2018) Contemporary evolution and scaling of 32 major cities in China. Ecol Appl 28(6):1655–1668

    Article  PubMed  Google Scholar 

  • Zhou D, Tian Y, Jiang G (2018) Spatio-temporal investigation of the interactive relationship between urbanization and ecosystem services: case study of the Jingjinji urban agglomeration, China. Ecol Indic 95:152–164

    Article  Google Scholar 

  • Zhou Y, Chen M, Tang Z, Mei Z (2021) Urbanization, land use change, and carbon emissions: quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustain Cities Soc 66:102701

    Article  Google Scholar 

  • Zhu X, Gao W, Zhou N, Kammen DM, Wu Y, Zhang Y, Chen W (2016) The inhabited environment, infrastructure development and advanced urbanization in China’s Yangtze River Delta region. Environ Res Lett 11:124020

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant No. 41901227 and U1901601], the Open Foundation of the State Key Laboratory of Urban and Regional Ecology of China [Grant No. SKLURE2020-2-1], and the Fundamental Research Funds for Central Non-profit Scientific Institution [Grant No. G202101-27].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 146 kb)

Supplementary file2 (DOCX 14448 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Ma, Q. & Fang, G. Spatial scaling of land use/land cover and ecosystem services across urban hierarchical levels: patterns and relationships. Landsc Ecol 38, 753–777 (2023). https://doi.org/10.1007/s10980-021-01387-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-021-01387-4

Keywords

Navigation