Skip to main content

Advertisement

Log in

Relationships between landscape structure and the prevalence of two tick-borne infectious agents, Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato, in small mammal communities

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

By modifying ecosystems, land cover changes influence the emergence, the spread and the incidence of vector-borne diseases.

Objective

This study aimed at identifying associations between landscape structure and the prevalence of two tick-borne infectious agents, Anaplasma phagocytophilum and Borrelia burgdorferi s.l., in small mammal communities.

Methods

Small mammals were sampled in 24 sites along a gradient of woodland fragmentation and hedgerow network density, and screened for infectious agents with real-time PCR techniques. For each site, structural variables (composition and configuration) of the surrounding landscape at various scales (0–500 m) and variables of wooded habitats connectivity based on graph theory and least cost path distances for the two dominant species, bank voles (Myodes glareolus) and wood mice (Apodemus sylvaticus), were computed.

Results

The Aphagocytophilum prevalence increased with wooded habitats cover (0–500 m), likely through host population size, and increased slightly with bank vole abundance, which has a higher reservoir competence than wood mouse. The B. burgdorferi s.l. prevalence increased with wooded ecotones only at local scales (50–100 m). Wooded habitats connectivity measures did not improve models built with simple land cover variables. A more marked spatial pattern was observed for the prevalence of A. phagocytophilum than B.burgdorferi s.l.

Conclusions

This study highlights the interest of considering together the ecology of infectious agents (e.g. host specificity) and the host species community ecology to better understand the influence of the landscape structure on the spatial distribution of vector-borne infectious agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agoulon A, Malandrin L, Lepigeon F, Vénisse M, Bonnet S, Becker CAM, Hoch T, Bastian S, Plantard O, Beaudeau F (2012) A vegetation index qualifying pasture edges is related to Ixodes ricinus density and to Babesia divergens seroprevalence in dairy cattle herds. Vet Parasitol 185:101–109

    Article  PubMed  Google Scholar 

  • Al Hassan D, Georgelin E, Delattre T, Burel F, Plantegenest M, Kindlmann P, Butet A (2012) Does the presence of grassy strips and landscape grain affect the spatial distribution of aphids and their carabid predators? Agric For Entomol 15:24–33

    Article  Google Scholar 

  • Allan BF, Keesing F, Ostfeld RS (2003) Effect of forest fragmentation on Lyme disease risk. Conserv Biol 17:267–272

    Article  Google Scholar 

  • Araya-Anchetta A, Busch JD, Scoles GA, Wagner DM (2015) Thirty years of tick population genetics: a comprehensive review. Infect Genet Evol 29:164–179

    Article  PubMed  Google Scholar 

  • Begon M, Hazel SM, Telfer S, Bown K, Carslake D, Cavanagh R, Chantrey J, Jones T, Bennett M (2003) Rodents, cowpox virus and islands: densities, numbers and thresholds. J Anim Ecol 72:343–355

    Article  Google Scholar 

  • Blaňarová L, Stanko M, Carpi G, Miklisová D, Víchová B, Mošanský L, Bona M, Derdáková M (2014) Distinct Anaplasma phagocytophilum genotypes associated with Ixodes trianguliceps ticks and rodents in Central Europe. Ticks Tick Borne Dis 5:928–938

    Article  PubMed  Google Scholar 

  • Boussard H, Baudry J (2014) Chloe2012: a software for landscape pattern analysis. https://www.rennes.inra.fr/sad/Outils-Produits/Outils-informatiques/Chloe

  • Bown KJ, Begon M, Bennett M, Woldehiwet Z, Ogden NH (2003) Seasonal dynamics of Anaplasma phagocytophila in a rodent-tick (Ixodes trianguliceps) system, United Kingdom. Emerg Infect Dis 9:63–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Bown KJ, Lambin X, Ogden NH, Begon M, Telford G, Woldehiwet Z, Birtles RJ (2009) Delineating Anaplasma phagocytophilum ecotypes in coexisting, discrete enzootic cycles. Emerg Infect Dis 15:1948–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bown KJ, Lambin X, Telford G, Heyder-Bruckner D, Ogden NH, Birtles RJ (2011) The common shrew (Sorex araneus): a neglected host of tick-borne infections? Vector-borne Zoonotic Dis 11:947–953

    Article  PubMed  Google Scholar 

  • Bown KJ, Lambin X, Telford GR, Ogden NH, Telfer S, Woldehiwet Z, Birtles RJ (2008) Relative importance of Ixodes ricinus and Ixodes trianguliceps as vectors for Anaplasma phagocytophilum and Babesia microti in field vole (Microtus agrestis) populations. Appl Environ Microbiol 74:7118–7125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyard C, Vourc’h G, Barnouin J, (2008) The relationships between Ixodes ricinus and small mammal species at the woodland-pasture interface. Exp Appl Acarol 44:61–76

    Article  PubMed  Google Scholar 

  • Cayol C, Jääskeläinen A, Koskela E, Kyröläinen S, Mappes T, Siukkola A, Kallio ER (2018) Sympatric Ixodes-tick species: pattern of distribution and pathogen transmission within wild rodent populations. Sci Rep 8:16660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chastagner A, Moinet M, Perez G, Roy E, Mccoy KD, Plantard O, Agoulon A, Bastian S, Butet A, Rantier Y, Verheyden H, Cèbe N, Leblond A, Vourc’h G (2016) Prevalence of Anaplasma phagocytophilum in small rodents in France. Ticks Tick Borne Dis 7:988–991

    Article  CAS  PubMed  Google Scholar 

  • Clay CA, Lehmer EM, Jeor SS, Dearing MD (2009) Testing mechanisms of the dilution effect: deer mice encounter rates, sin nombre virus prevalence and species diversity. Ecohealth 6:250–259

    Article  PubMed  Google Scholar 

  • Close B, Banister K, Baumans V, Bernoth EM, Bromage N, Bunyan J, Erhardt W, Flecknell P, Gregory N, Hackbarth H, Morton D, Warwick C (1997) Recommendations for euthanasia of experimental animals: part 2. Lab Anim 31:1–32

    Article  CAS  PubMed  Google Scholar 

  • Coipan EC, Sprong H (2016) Ecology of Borrelia burgdorferi sensu lato. In: Braks MAH, van Wieren SE, Takken W, Sprong H (eds) Ecology and prevention of Lyme borreliosis. Wageningen Academic Publishers, Wageningen, pp 41–61

    Chapter  Google Scholar 

  • Courtney JW, Kostelnik LM, Zeidner NS, Massung RF (2004) Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J Clin Microbiol 42:3164–3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eskildsen A (2010) Effects of resource abundance on habitat selection and spatial behavior of the bank vole (Myodes glareolus). Master’s Thesis, University of Copenhagen

  • Ferrante M, González E, Lövei GL (2017) Predators do not spill over from forest fragments to maize fields in a landscape mosaic in central Argentina. Ecol Evol 7:1–9

    Article  Google Scholar 

  • Foltête JC, Clauzel C, Vuidel G (2012) A software tool dedicated to the modelling of landscape networks. Environ Model Softw 38:316–327

    Article  Google Scholar 

  • Gassner F, Verbaarschot P, Smallegange RC, Spitzen J, Van Wieren SE, Takken W (2008) Variations in Ixodes ricinus density and Borrelia infections associated with cattle introduced into a woodland in The Netherlands. Appl Environ Microbiol 74:7138–7144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehring TM, Swihart RK (2003) Body size, niche breadth, and ecologically scaled responses to habitat fragmentation: mammalian predators in an agricultural landscape. Biol Conserv 109:283–295

    Article  Google Scholar 

  • Gern L, Estrada-Peña A, Frandsen F, Gray JS, Jaenson TG, Jongejan F, Kahl O, Korenberg E, Mehl R, Nuttall PA (1998) European reservoir hosts of Borrelia burgdorferi sensu lato. Zentralbl Bakteriol 287:196–204

    Article  CAS  PubMed  Google Scholar 

  • Gern L, Siegenthaler M, Hu CM, Leuba-Garcia S, Humair PF, Moret J (1994) Borrelia burgdorferi in rodents (Apodemus flavicollis and A. sylvaticus): Duration and enhancement of infectivity for Ixodes ricinus ticks. Eur J Epidemiol 10:75–80

    Article  CAS  PubMed  Google Scholar 

  • Gil-Tena A, Nabucet J, Mony C, Abadie J, Saura S (2014) Woodland bird response to landscape connectivity in an agriculture-dominated landscape: a functional community approach. Community Ecol 15:256–268

    Article  Google Scholar 

  • Gottdenker NL, Chaves LF, Calzada JE, Saldaña A, Carroll CR (2012) Host life history strategy, species diversity, and habitat influence Trypanosoma cruzi vector infection in changing landscapes. PLoS Negl Trop Dis 6:e1884

    Article  PubMed  PubMed Central  Google Scholar 

  • Guivier E, Galan M, Chaval Y, Xuéreb A, Ribas Salvador A, Poulle M-L, Voutilainen L, Henttonen H, Charbonnel N, Cosson JF (2011) Landscape genetics highlights the role of bank vole metapopulation dynamics in the epidemiology of Puumala hantavirus. Mol Ecol 20:3569–3583

    CAS  PubMed  Google Scholar 

  • Halos L, Bord S, Cotté V, Gasqui P, Abrial D, Barnouin J, Boulouis H-J, Vayssier-Taussat M, Vourc’h G (2010) Ecological factors characterizing the prevalence of bacterial tick-borne pathogens in Ixodes ricinus ticks in pastures and woodlands. Appl Environ Microbiol 76:4413–4420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hersh MH, Tibbetts M, Strauss M, Ostfeld RS, Keesing F (2012) Reservoir competence of wildlife host species for Babesia microti. Emerg Infect Dis 18:1951–1957

    Article  PubMed  PubMed Central  Google Scholar 

  • Heylen D, Tijsse E, Fonville M, Matthysen E, Sprong H (2013) Transmission dynamics of Borrelia burgdorferi s.l. in a bird tick community. Environ Microbiol 15:663–673

    Article  PubMed  Google Scholar 

  • Hoch T, Monnet Y, Agoulon A (2010) Influence of host migration between woodland and pasture on the population dynamics of the tick Ixodes ricinus: a modelling approach. Ecol Modell 221:1798–1806

    Article  Google Scholar 

  • Hofmeester TR, Coipan EC, Van Wieren SE, Prins HHT, Takken W, Sprong H (2016) Few vertebrate species dominate the Borrelia burgdorferi s.l. life cycle. Environ Res Lett 11:043001

    Article  Google Scholar 

  • Hofmeester TR, Jansen PA, Wijnen HJ, Coipan EC, Fonville M, Prins HHT, Sprong H, van Wieren SE (2017) Cascading effects of predator activity on tick-borne disease risk. Proc R Soc B Biol Sci 284:20170453

    Article  Google Scholar 

  • Huang ZYX, de Boer WF, van Langevelde F, Olson V, Blackburn TM, Prins HHT (2013) Species’ life-history traits explain interspecific variation in reservoir competence: a possible mechanism underlying the dilution effect. PLoS ONE 8:e54341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbard MJ, Baker AS, Cann KJ (1998) Distribution of Borrelia burgdorferi s.l. spirochaete DNA in British ticks (Argasidae and Ixodidae) since the 19th century, assessed by PCR. Med Vet Entomol 12:89–97

    Article  CAS  PubMed  Google Scholar 

  • Humair PF, Rais O, Gern L (1999) Transmission of Borrelia afzelii from Apodemus mice and Clethrionomys voles to Ixodes ricinus ticks: differential transmission pattern and overwintering maintenance. Parasitology 118:33–42

    Article  PubMed  Google Scholar 

  • Humair PF, Turrian N, Aeschlimann A, Gern L (1993) Borrelia burgdorferi in a focus of Lyme borreliosis: epizootiologic contribution of small mammals. Folia Parasitol 40:65–70

    CAS  Google Scholar 

  • Hurvich CM, Tsai C-L (1989) Regression and time series model selection in small samples. Biometrika 76:297–307

    Article  Google Scholar 

  • Jahfari S, Coipan EC, Fonville M, Docters van Leeuwen A, Hengeveld P, Heylen D, Heyman P, van Maanen C, Butler CM, Földvári G, Szekeres S, Van Duijvendijk G, Tack W, Rijks JM, Van der Giessen J, Takken W, Van Wieren SE, Takumi K, Sprong H (2014) Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasites Vectors 7:365

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson PTJ, Preston DL, Hoverman JT, Richgels KLD (2013) Biodiversity decreases disease through predictable changes in host community competence. Nature 494:230–233

    Article  CAS  PubMed  Google Scholar 

  • Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallio ER, Begon M, Birtles RJ, Bown KJ, Koskela E, Mappes T, Watts PC (2014) First Report of Anaplasma phagocytophilum and Babesia microti in Rodents in Finland. Vector-borne Zoonotic Dis 14:389–393

    Article  PubMed  PubMed Central  Google Scholar 

  • Keesing F, Brunner J, Duerr S, Killilea M, LoGiudice K, Schmidt K, Vuong H, Ostfeld RS (2009) Hosts as ecological traps for the vector of Lyme disease. Proc R Soc B Biol Sci 276:3911–3919

    Article  CAS  Google Scholar 

  • Kikkawa T (1964) Movement, activity and distribution of the small rodents Clethrionomys glareolus and Apodemus sylvaticus in Woodland. J Anim Ecol 33:259–299

    Article  Google Scholar 

  • Kurtenbach K, De Michelis S, Etti S, Schäfer SM, Sewell H-S, Brade V, Kraiczy P (2002a) Host association of Borrelia burgdorferi sensu lato: the key role of host complement. Trends Microbiol 10:74–79

    Article  CAS  PubMed  Google Scholar 

  • Kurtenbach K, De Michelis S, Sewell HS, Etti S, Schafer SM, Holmes E, Hails R, Collares-Pereira M, Santos-Reis M, Hanincova K, Labuda M, Bormane A, Donaghy M (2002b) The key roles of selection and migration in the ecology of Lyme borreliosis. Int J Med Microbiol 291:152–154

    Article  PubMed  Google Scholar 

  • Kurtenbach K, Hanincová K, Tsao JI, Margos G, Fish D, Ogden NH (2006) Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat Rev Microbiol 4:660–669

    Article  CAS  PubMed  Google Scholar 

  • Lambin EF, Tran A, Vanwambeke SO, Linard C, Soti V (2010) Pathogenic landscapes: interactions between land, people, disease vectors, and their animal hosts. Int J Health Geogr 9:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Hartemink N, Speybroeck N, Vanwambeke SO (2012) Consequences of landscape fragmentation on Lyme disease risk: a cellular automata approach. PLoS ONE 7:e39612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mader H (1984) Animal habitat isolation by roads and agricultural fields. Biol Conserv 29:81–96

    Article  Google Scholar 

  • Mansfield KL, Johnson N, Phipps LP, Stephenson JR, Fooks AR, Solomon T (2009) Tick-borne encephalitis virus: a review of an emerging zoonosis. J Gen Virol 90:1781–1794

    Article  CAS  PubMed  Google Scholar 

  • Margos G, Vollmer SA, Cornet M, Garnier M, Fingerle V, Wilske B, Bormane A, Vitorino L, Collares-Pereira M, Drancourt M, Kurtenbach K (2009) A new Borrelia species defined by multilocus sequence analysis of housekeeping genes. Appl Environ Microbiol 75:5410–5416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsot M, Chapuis JL, Gasqui P, Dozières A, Masséglia S, Pisanu B, Ferquel E, Vourc’h G (2013) Introduced Siberian chipmunks (Tamias sibiricus barberi) contribute more to Lyme borreliosis risk than native reservoir rodents. PLoS ONE 8:1–8

    Article  CAS  Google Scholar 

  • Meunier FD, Corbin J, Verheyden C, Jouventin P (1999) Effects of landscape type and extensive management on use of motorway roadsides by small mammals. Can J Zool 77:108–117

    Article  Google Scholar 

  • Michel N, Burel F, Legendre P, Butet A (2007) Role of habitat and landscape in structuring small mammal assemblages in hedgerow networks of contrasted farming landscapes in Brittany, France. Landsc Ecol 22:1241–1253

    Article  Google Scholar 

  • Millán de la Peña N, Butet A, Delettre Y, Paillat G, Morant P, Le Du L, Burel F (2003) Response of the small mammal community to changes in western French agricultural landscapes. Landsc Ecol 18:265–278

    Article  Google Scholar 

  • Mortelliti A, Amori G, Boitani L (2010) The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia 163:535–547

    Article  PubMed  Google Scholar 

  • Nupp TE, Swihart RK (1998) Effects of forest fragmentation on populations attributes of white-footed mice and eastern chipmunks. J Mammal 79:1234–1243

    Article  Google Scholar 

  • Nupp TE, Swihart RK (2000) Landscape-level correlates of small-mammal assemblages in forest fragments of farmland. J Mammal 81:512–526

    Article  Google Scholar 

  • Ostfeld RS, Keesing F (2000) Biodiversity and disease risk: the case of Lyme disease. Conserv Biol 14:722–728

    Article  Google Scholar 

  • Ostfeld RS, Levi T, Jolles AE, Martin LB, Hosseini PR, Keesing F (2014) Life history and demographic drivers of reservoir competence for three tick-borne zoonotic pathogens. PLoS ONE 9:e107387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ostfeld RS, LoGiudice K (2003) Community disassembly, biodiversity loss, and the erosion of an ecosystem service. Ecology 84:1421–1427

    Article  Google Scholar 

  • Ouin A, Paillat G, Butet A, Burel F (2000) Spatial dynamics of wood mouse (Apodemus sylvaticus) in an agricultural landscape under intensive use in the Mont Saint Michel Bay (France). Agric Ecosyst Environ 78:159–165

    Article  Google Scholar 

  • Paillat G, Butet A (1996) Spatial dynamics of the bank vole (Clethrionomys glareolus) in a fragmented landscape. Acta Ecol 17:553–559

    Google Scholar 

  • Papillon Y, Buffiere L, Butet A (2002) Rhodamine B as collective marker for small mammals. Acta Theriol (Warsz) 47:491–497

    Article  Google Scholar 

  • Perez G, Bastian S, Agoulon A, Bouju A, Durand A, Faille F, Lebert I, Rantier Y, Plantard O, Butet A (2016) Effect of landscape features on the relationship between Ixodes ricinus ticks and their small mammal hosts. Parasite Vectors 9:1–18

    Article  CAS  Google Scholar 

  • Perez G, Bastian S, Chastagner A, Agoulon A, Plantard O, Vourc’h G, Butet A (2017) Ecological factors influencing small mammal infection by Anaplasma phagocytophilum and Borrelia burgdorferi s.l. in agricultural and forest landscapes. Environ Microbiol 19:4205–4219

    Article  CAS  PubMed  Google Scholar 

  • Pisanu B, Chapuis JL, Dozières A, Basset F, Poux V, Vourc’h G (2014) High prevalence of Borrelia burgdorferi s.l. in the European red squirrel Sciurus vulgaris in France. Ticks Tick Borne Dis 5:1–6

    Article  PubMed  Google Scholar 

  • R Development Core Team (2019) R v.3.6.1. R foundation for statistical computing

  • Randolph SE (1975a) Seasonal dynamics of a host-parasite system: Ixodes trianguliceps (Acarina: Ixodidae) and its small mammal hosts. J Anim Ecol 44:425–449

    Article  Google Scholar 

  • Randolph SE (1975b) Patterns of distribution of the tick Ixodes trianguliceps birula on its hosts. J Anim Ecol 44:451–474

    Article  Google Scholar 

  • Reidsma P, Tekelenburg T, vand den Berg M, Alkemade R (2006) Impacts of land-use change on biodiversity: An assessment of agricultural biodiversity in the European Union. Agric Ecosyst Environ 114:86–102

    Article  Google Scholar 

  • Rico A, Kindlmann P, Sedláček F (2007) Barrier effects of roads on movements of small mammals. Folia Zool 56:1–12

    Google Scholar 

  • Rizzoli A, Hauffe HC, Carpi G, Vourc’h GI, Neteler M, Rosà R (2011) Lyme borreliosis in Europe. Eurosurveillance 16:1–8

    Article  Google Scholar 

  • Roche B, Rohani P, Dobson AP, Guégan J-F (2013) The impact of community organization on vector-borne pathogens. Am Nat 181:1–11

    Article  PubMed  Google Scholar 

  • Rollend L, Fish D, Childs JE (2013) Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: a summary of the literature and recent observations. Ticks Tick Borne Dis 4:46–51

    Article  PubMed  Google Scholar 

  • Rosso F, Tagliapietra V, Baráková I, Derdáková M, Konečný A, Hauffe HC, Rizzoli A, Kone A, Hauffe HC, Rizzoli A (2017) Prevalence and genetic variability of Anaplasma phagocytophilum in wild rodents from the Italian alps. Parasite Vectors 10:293

    Article  Google Scholar 

  • Rubio A, Ávila-Flores R, Suzán G (2014) Responses of small mammals to habitat fragmentation: epidemiological considerations for rodent-borne hantaviruses in the Americas. EcoHealth 11:526–533

    Article  PubMed  Google Scholar 

  • Ruiz-Capillas P, Mata C, Malo JE (2015) How many rodents die on the road? Biological and methodological implications from a small mammals’ roadkill assessment on a Spanish motorway. Ecol Res 30:417–427

    Article  Google Scholar 

  • Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103

    Article  Google Scholar 

  • Sinski E, Pawelczyk A, Bajer A, Behnke JM (2006) Abundance of wild rodents, ticks and environmental risk of Lyme borreliosis: a longitudinal study in an area of Mazury Lakes district of Poland. Ann Agric Environ Med 13:295–300

    CAS  PubMed  Google Scholar 

  • Skuballa J, Petney T, Pfäffle M, Oehme R, Hartelt K, Fingerle V, Kimmig P, Taraschewski H (2012) Occurrence of different Borrelia burgdorferi sensu lato genospecies including B. afzelii, B. bavariensis, and B. spielmanii in hedgehogs (Erinaceus spp.) in Europe. Ticks Tick Borne Dis 3:8–13

    Article  PubMed  Google Scholar 

  • Stuen S, Granquist EG, Silaghi C (2013) Anaplasma phagocytophilum: a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol 4:1–33

    Google Scholar 

  • Suzán G, García-Peña GE, Castro-Arellano I, Rico O, Rubio AV, Tolsá MJ, Roche B, Hosseini PR, Rizzoli A, Murray KA, Zambrana-Torrelio C, Vittecoq M, Bailly X, Aguirre AA, Daszak P, Prieur-Richard A-H, Mills JN, Guégan J-F (2015) Metacommunity and phylogenetic structure determine wildlife and zoonotic infectious disease patterns in time and space. Ecol Evol 5:865–873

    Article  PubMed  PubMed Central  Google Scholar 

  • Szacki J (1987) Ecological corridor as a factor determining the structure and organization of a bank vole population. Acta Theriol (Warsz) 32:31–44

    Article  Google Scholar 

  • Szacki J, Babińska-werka J, Liro A (1993) The influence of landscape spatial structure on small mammal movements. Acta Theriol (Warsz) 38:113–123

    Article  Google Scholar 

  • Szekeres S, Coipan EC, Rigó K, Majoros G, Jahfari S, Sprong H, Földvári G (2015) Eco-epidemiology of Borrelia miyamotoi and Lyme borreliosis spirochetes in a popular hunting and recreational forest area in Hungary. Parasite Vectors 8:1–8

    Article  Google Scholar 

  • Tattersall FH, Macdonald DW, Hart BJ, Johnson P, Manley W, Feber R (2002) Is habitat linearity important for small mammal communities on farmland? J Appl Ecol 39:643–652

    Article  Google Scholar 

  • Tew TE, Macdonald DW (1994) Dynamics of space use and male vigour amongst wood mice, Apodemus sylvaticus, in the cereal ecosystem. Behav Ecol Sociobiol 34:337–345

    Article  Google Scholar 

  • van Apeldoorn RC, Oostenbrink WT, van Winden A, van der Zee FF (1992) Effects of fragmentation on the bank vole, Clethrionomys glareolus, in an agricultural landscape. Oikos 65:265–274

    Article  Google Scholar 

  • Vourc’h G, Boyard C, Barnouin J (2008) Mammal and bird species distribution at the woodland-pasture interface in relation to the circulation of ticks and pathogens. Ann N Y Acad Sci 1149:322–325

    Article  PubMed  Google Scholar 

  • Zhang Z, Usher MB (1991) Dispersal of wood mice and bank voles in an agricultural landscape. Acta Theriol (Warsz) 36:239–245

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to Agnès Bouju, Floriane Boullot, Axelle Durand, Mathieu Gonnet, Olivier Jambon, Maggy Jouglin, Emmanuelle Moreau, Pranav Pandit, and Ionut Pavel who helped in sampling and preparing small mammal tissues before molecular analyses; to Séverine Barry, Amélie Cohadon, Angélique Pion, and Valérie Poux who helped in the lab for the molecular detection of infectious agents; and to Nelly Dorr and Isabelle Lebert who managed the data base of the OSCAR project (https://www6.inra.fr/oscar/). We thank the ‘Zone Atelier Armorique’ (https://osur.univ-rennes1.fr/za-armorique/) for providing the GIS data and for the access to its field facilities. We thank Henri Lemercier and Benoît Chevallier from the ‘Office National des Forêts’ for facilitating the access to the Villecartier forest. The ‘Tiques et Maladies à Tiques’ team of the ‘Réseau Ecologie des Interactions Durables’ group, supported by the INRA and the CNRS gave a rich thinking environment. This work was funded by the French National Research Agency (ANR-11-Agro-001-04; call for Proposal ‘Agrobiosphere’, OSCAR project). This work is part of the PhD of GP, which was supported by a fellowship from the Brittany region, France. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author information

Authors and Affiliations

Authors

Contributions

GP, SB, AA, GV, OP and AB designed the study. GP, SB, AA, YR, OP and AB participated to the small mammal field sampling. AC performed most of the DNA extractions and the molecular analyses. YR managed the GIS data. GP performed all data analyses and drafted the manuscript. All authors read, commented and approved the manuscript.

Corresponding author

Correspondence to Grégoire Perez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 749 kb)

10980_2019_957_MOESM2_ESM.ods

Supplementary file2 (ODS 27 kb). Appendix 1: Example of the habitats landscape connectivity analyses. Final aggregated land cover 5 m-resolution raster file (a) and ‘dPC’ (‘difference in Probability of Connectivity’) metric computed on different graphs (b, c, and d). The sampling patch on the right (surrounded in blue) appears moderately connected with Euclidian distances (b), while it is weakly connected when weighted by least cost paths (c and d) because it is surrounded by a river at North and by roads on other sides (see a). The sampling patch on the left is moderately connected for the wood mouse (c) while it is weakly connected for the bank vole (d) because it is separated to other wooded habitat patches by large grassland or crops patches resulting in fewer connections for this latter species. See Materials and Methods for more details.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez, G., Bastian, S., Chastagner, A. et al. Relationships between landscape structure and the prevalence of two tick-borne infectious agents, Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato, in small mammal communities. Landscape Ecol 35, 435–451 (2020). https://doi.org/10.1007/s10980-019-00957-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-019-00957-x

Keywords

Navigation