Skip to main content
Log in

The relationships between Ixodes ricinus and small mammal species at the woodland–pasture interface

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Ixodes ricinus, as vector, and small mammals, as reservoirs, are implicated in pathogen transmission between wild fauna, domestic animals and humans at the woodland–pasture interface. The ecological relationship between ticks and small mammals was monitored in 2005 on four bocage (enclosed pastureland) sites in central France, where questing ticks were collected by dragging and small mammals were trapped. Questing I. ricinus tick and small mammal locations in the environment were assessed through correspondence analysis. I. ricinus larval burden on small mammals was modeled using a negative binomial law. The correspondence analyses underlined three landscape features: grassland, hedgerow, and woodland. Seven small mammal species were trapped, while questing ticks were all I. ricinus, with the highest abundance in woodland and the lowest in pasture. The small mammals were overall more abundant in hedgerow, less present in woodland and sparse in grassland. They carried mainly I. ricinus, and secondarily I. acuminatus and I. trianguliceps. The most likely profile for a tick-infested small mammal corresponded to a male wood mouse (Apodemus sylvaticus) in woodland or hedgerow during a dry day. A. sylvaticus, which was the only species captured in grassland, but was also present in hedgerow and woodland, may be a primary means of transfer of I. ricinus larvae from woodland to pasture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aeschlimann A (1981) The role of hosts and environment in the natural dissemination of ticks. Studies on a Swiss population of Ixodes ricinus L., 1758. Rev Adv Parasitol 4:859–869

    Google Scholar 

  • Arzouni J-P (1990) Une enquête séro-épidémiologique dans le Puy-de-Dôme, à propos de trois maladies transmissibles par les tiques: la maladie de Lyme, la fièvre boutonneuse méditerranéenne, la fièvre Q. Doctorat en médecine. Université Clermont-Ferrand I, France, 161 pp

    Google Scholar 

  • Barbour AG, Fish D (1993) The biological and social phenomenon of Lyme disease. Science 260:1610–1616

    Article  PubMed  CAS  Google Scholar 

  • Benzécri J-P (1992) Correspondence analysis handbook. Marcel Dekker, New York

    Google Scholar 

  • Bown KJ, Begon M, Bennett M, Woldehiwet Z, Ogden NH (2003) Seasonal dynamics of Anaplasma phagocytophila in a rodent-tick (Ixodes trianguliceps) system, United Kingdom. Emerg Infect Dis 9:63–70

    PubMed  Google Scholar 

  • Bown KJ, Begon M, Bennett M, Birtles RJ, Burthe S, Lambin X, Telfer S, Woldehiwet Z, Ogden NH (2006) Sympatric Ixodes trianguliceps and Ixodes ricinus ticks feeding on field voles (Microtus agrestis): potential for increased risk of Anaplasma phagocytophilum in the united kingdom? Vector Borne Zoonotic Dis 6:404–410

    Article  PubMed  CAS  Google Scholar 

  • Boyard C (2007) Facteurs environnementaux de variation de l’abondance des tiques Ixodes ricinus dans des zones d’étude modèles en Auvergne. Thèse de Doctorat d’Université. Université Blaise Pascal, Clermont-Ferrand II, 231 pp

    Google Scholar 

  • Boyard C, Barnouin J, Gasqui P, Vourc’h G (2007) Local environmental factors characterizing Ixodes ricinus nymph abundance in grazed permanent pastures for cattle. Parasitology 134:987–994

    Article  PubMed  CAS  Google Scholar 

  • Carroll JF, Schmidtmann ET (1996) Dispersal of blacklegged tick (Acari:Ixodidae) nymphs and adults at the woods-pasture interface. J Med Entomol 33:554–558

    PubMed  CAS  Google Scholar 

  • Cavanagh R, Begon M, Bennett M, Ergon T, Graham IM, de Haas PEW, Hart CA, Koedam M, Kremer K, Lambin X, Roholl P, van Soolingen D (2002) Mycobacterium microti infection (vole tuberculosis) in wild rodent populations. J Clin Microbiol 40:3281–3285

    Article  PubMed  Google Scholar 

  • Chessel D, Dufour A-B, Dray S (2006). ade4: analysis of environmental data: exploratory and euclidean method, R package version 1.4-2. [Online] http://www.cran.r-project.org/. Last access: 15/03/2007

  • Chomel BB (1998) New emerging zoonoses: a challenge and an opportunity for the veterinary profession. Comp Immunol Microbiol Infect Dis 21:1–14

    Article  PubMed  CAS  Google Scholar 

  • Cleaveland S, Laurenson MK, Taylor LH (2001) Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philos Trans R Soc Lond B Biol Sci 356:991–999

    Article  PubMed  CAS  Google Scholar 

  • Cotty A (1985). Clé de détermination des Ixodidae et Amblyommidae de Suisse. Université de Neuchâtel, Neuchâtel, Switzerland

    Google Scholar 

  • Daniel M, Cerny V, Dusbabek F, Honzakova E, Olejnicek J (1976) Influence of microclimate on the life cycle of the common tick Ixodes ricinus (L.) in the thermophilic oak forest. Folia Parasitol 23:327–342

    PubMed  CAS  Google Scholar 

  • Daniel M, Cerny V, Dusbabek F, Honzakova E, Olejnicek J (1977) Influence of microclimate on the life cycle of the common tick Ixodes ricinus (L.) in an open area in comparison with forests habitats. Folia Parasitol 24:149–160

    PubMed  CAS  Google Scholar 

  • Despommier D, Ellis BR, Wilcox BA (2007) The role of ecotones in emerging infectious diseases. EcoHealth 3:281–289

    Article  Google Scholar 

  • Dizij A, Kurtenbach K (1995) Clethrionomys glareolus, but not Apodemus flavicollis, acquires resistance to Ixodes ricinus L., the main European vector of Borrelia burgdorferi. Parasite Immunol 17:177–183

    Article  PubMed  CAS  Google Scholar 

  • George JC, Chastel C (2002) Maladies vectorielles à tiques et modifications de l’écosystème en Lorraine. Bull Soc Pathol Exot 95:95–100

    PubMed  CAS  Google Scholar 

  • Gilot B, Pautou G, Moncada E (1975) L’analyse de la végétation appliquée à la détection des populations de tiques exophiles dans le Sud-Est de la France: l’exemple d’Ixodes ricinus (Linné 1798) (Acarina, Ixodoidea). Acta Trop Sep 32:340–347

    CAS  Google Scholar 

  • Gilot B, Couatarmanac’h A, Guigen C, Beaucornu JC (1992) Bio-écologie d’Ixodes acuminatus Neumann, 1901: hôtes et répartition spatio-temporelle de l’espèce en France. Ann Parasitol Hum Comp 67:19–25

    Google Scholar 

  • Gray JS (1985) A carbon dioxide trap for prolonged sampling of Ixodes ricinus L. populations. Exp Appl Acarol 1:35–44

    Article  PubMed  CAS  Google Scholar 

  • Gray JS (1998) Review: the ecology of ticks transmitting Lyme borreliosis. Exp Appl Acarol 22:249–258

    Article  Google Scholar 

  • Gray JS (2002) Biology of Ixodes species ticks in relation to tick-borne zoonoses. Wien Klin Wochenschr 114:473–478

    PubMed  Google Scholar 

  • Guédon G, Bélair M, Pascal M (1990) Comparaison de l’efficacité de cinq pièges non vulnérants à l’égard de la capture du Campagnol provençal (Pitymys duodecimcostatus de Sélys-Longchamps, 1839). Mammalia 54:137–145

    Google Scholar 

  • Hanincova K, Schäfer SM, Etti S, Sewell H-S, Taragelova V, Ziak D, Labuda M, Kurtenbach K (2003) Association of Borrelia afzelii with rodents in Europe. Parasitology 126:11–20

    Article  PubMed  CAS  Google Scholar 

  • Haydon DT, Cleaveland S, Taylor LH, Laurenson MK (2002) Identifying reservoirs of infection: a conceptual and practical challenge. Emerg Infect Dis 8:1468–1473

    PubMed  Google Scholar 

  • Hill MO (1974) Correspondence analysis: a neglected multivariate method. Appl Stat 23:340–354

    Article  Google Scholar 

  • Hillyard PD (1996) Ticks of the North-West Europe. Field Studies Council, Shrewsbury, UK

    Google Scholar 

  • Hughes VL, Randolph SE (2001) Testosterone depresses innate and acquired resistance to ticks in natural rodent hosts: a force for aggregated distributions of parasites. J Parasitol 87:49–54

    PubMed  CAS  Google Scholar 

  • Humair PF, Rais O, Gern L (1999) Transmission of Borrelia afzelii from Apodemus mice and Clethrionomys voles to Ixodes ricinus ticks: differential transmission pattern and overwintering maintenance. Parasitology 118:33–42

    Article  PubMed  Google Scholar 

  • Klein SL (2004) Hormonal and immunological mechanisms mediating sex differences in parasite infection. Parasite Immunol 26:247–264

    Article  PubMed  CAS  Google Scholar 

  • Kurtenbach K, Peacey M, Rijpkema SGT, Hoodless AN, Nuttall PA, Randolph SE (1998) Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl Environ Microbiol 64:1169–1174

    PubMed  CAS  Google Scholar 

  • L’Hostis M, Seegers H (2002) Tick-borne parasitic diseases in Cattle: current knowledge and prospective risk analysis related to the ongoing evolution in French cattle farming systems. Vet Res 33:599–611

    Article  PubMed  Google Scholar 

  • L’Hostis M, Chauvin A, Valentin A, Marchand A, Gorenflot A (1995a) Large scale survey of bovine babesiosis due to Babesia divergens in France. Vet Rec 14:36–38

    Article  Google Scholar 

  • L’Hostis M, Dumon H, Dorchies B, Boisdron F, Gorenflot A (1995b) Seasonal incidence and ecology of the tick Ixodes ricinus (Acari: Ixodidae) on grazing pastures in Western France. Exp Appl Acarol 19:211–220

    Article  PubMed  CAS  Google Scholar 

  • L’Hostis M, Dumon H, Fusade A, Lazareff S, Gorenflot A (1996) Seasonal incidence of Ixodes ricinus (Acari: Ixodidae) on rodents in western France. Exp Appl Acarol 20:359–368

    Article  PubMed  CAS  Google Scholar 

  • Le Louarn H (1971) Détermination de l’âge par la pesée des cristallins chez quelques espèces de rongeurs. Mammalia 35:636–643

    Google Scholar 

  • Le Louarn H, Quéré J-P (2003) Les rongeurs de France: Faunistique et biologie, 2ème edn. INRA, Paris

    Google Scholar 

  • Le Pesteur MH, Giraudoux P, Delattre P, Damange JP, Quéré J-P (1992) Spatiotemporal distribution of four species of cestodes in a landscape of mid-altitude mountains (Jura, France). Ann Parasitol Hum Comp 67:155–160

    Google Scholar 

  • Lindsay LR, Mathison SW, Barker IK, McEwen SA, Surgeoner GA (1999) Abundance of Ixodes scapularis (Acari: Ixodidae) larvae and nymphs in relation to host density and habitat on Long Point, Ontario. J Med Entomol 36:243–254

    PubMed  CAS  Google Scholar 

  • Liz JS, Anderes L, Sumner JW, Massung RF, Gern L, Rutti B, Brossard M (2000) PCR detection of granulocytic ehrlichiae in Ixodes ricinus ticks and wild small mammals in western Switzerland. J Clin Microbiol 38:1002–1007

    PubMed  CAS  Google Scholar 

  • MacLeod J (1932) The bionomics of Ixodes ricinus L., the “sheep tick” of Scotland. Parasitology 24:382–400

    Article  Google Scholar 

  • Martinet L (1966) Détermination de l’âge chez le Campagnol des champs (Microtus arvalis pallas) par la pesée du cristallin. Mammalia 30:425–430

    Article  Google Scholar 

  • Mémeteau S, Seegers H, Jolivet F, L’Hostis M (1998) Assessment of the risk of infestation of pastures by Ixodes ricinus due to their phyto-ecological characteristics. Vet Res 29:487–496

    PubMed  Google Scholar 

  • Michalik J, Hofman T, Buczek A, Skoracki M, Sikora B (2003) Borrelia burgdorferi s.l. in Ixodes ricinus (Acari: ixodidae) ticks collected from vegetation and small rodents in recreational areas of the City of Poznan. J Med Entomol 40:690–697

    PubMed  Google Scholar 

  • Morán Cadenas F, Rais O, Humair PF, Douet V, Moret J, Gern L (2007) Identification of host bloodmeal source and Borrelia burgdorferi sensu lato in field-collected Ixodes ricinus ticks in Chaumont (Switzerland). J Med Entomol 44:1109–1117

    Article  PubMed  Google Scholar 

  • Morse SS (1995) Factors in the emergence of infectious diseases. Emerg Infect Dis 1:7–15

    Article  PubMed  CAS  Google Scholar 

  • Nelson L, Clark FW (1973) Correction for sprung traps in catch/effort calculations of trapping results. J Mammal 54:295–298

    Article  Google Scholar 

  • Pascal M, Siorat F, Lorvelec O, Yésou P, Simberloff D (2005) A pleasing consequence of Norway rat eradication: two shrew species recover. Divers Distrib 11:193–198

    Article  Google Scholar 

  • Perret J-L, Guerin PM, Diehl PA, Vlimant M, Gern L (2003) Darkness induces mobility, and saturation deficit limits questing duration, in the tick Ixodes ricinus. J Exp Biol 206:1809–1815

    Article  PubMed  Google Scholar 

  • Pichon B, Kahl O, Gray JS (2006) Pathogens and host DNA in Ixodes ricinus nymphal ticks from a German forest. Vector Borne Zoonotic Dis 6:282–387

    Article  Google Scholar 

  • Quéré J-P, Vincent J-P (1989) Détermination de l’âge chez le Mulot gris (Apodemus sylvaticus L., 1758) par la pesée des cristallins. Mammalia 53:287–293

    Google Scholar 

  • R Development Core Team (2005) R: a language and environment for statistical computing, version 2.2.1. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Randolph SE, Storey K (1999) Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): implications for parasite transmission. J Med Entomol 36:741–748

    PubMed  CAS  Google Scholar 

  • Randolph SE, Miklisova D, Lysy J, Rogers DJ, Labuda M (1999) Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology 118:177–186

    Article  PubMed  Google Scholar 

  • Shaw DJ, Grenfell BT, Dobson AP (1998) Patterns of macroparasite aggregation in wildlife host populations. Parasitology 117:597–610

    Article  PubMed  Google Scholar 

  • Sinski E, Pawelczyk A, Bajer A, Behnke JM (2006) Abundance of wild rodents, ticks and environmental risk of Lyme borreliosis: a longitudinal study in an area of Mazury Lakes district of Poland. Ann Agric Environ Med 13:295–300

    PubMed  CAS  Google Scholar 

  • Stanko M, Krasnov BR, Miklisova D, Morand S (2007) Simple epidemiological model predicts the relationships between prevalence and abundance in ixodid ticks. Parasitology 134:59–68

    Article  PubMed  CAS  Google Scholar 

  • Steere AC, Coburn J, Glickstein L (2004) The emergence of Lyme disease. J Clin Invest 113:1093–1101

    Article  PubMed  CAS  Google Scholar 

  • Stephens DS, Moxon ER, Adams J, Altizer S, Antonovics J, Aral S, Berkelman R, Bond E, Bull J, Cauthen G, Farley MM, Glasgow A, Glasser JW, Katner HP, Kelley S, Mittler J, Nahmias AJ, Nichol S, Perrot V, Pinner RW, Schrag S, Small P, Thrall PH (1998) Emerging and reemerging infectious diseases: a multidisciplinary perspective. Am J Med Sci 315:64–75

    Article  PubMed  CAS  Google Scholar 

  • Tälleklint L, Jaenson TGT (1994) Transmission of Borrelia burgdorferi s.l. from mammal reservoirs to the primary vector of Lyme borreliosis, Ixodes ricinus (acari: ixodidae), in Sweden. J Med Entomol 31:880–886

    PubMed  Google Scholar 

  • Tälleklint L, Jaenson TGT (1997) Infestation of mammals by Ixodes ricinus ticks (Acari: Ixodidae) in south-central Sweden. Exp Appl Acarol 21:755–771

    Article  PubMed  Google Scholar 

  • Treml F, Pejcoch M, Holesovska Z (2002) Small mammals – natural reservoir of pathogenic leptospires. Vet Med - Czech 47:309–314

    Google Scholar 

  • Vassallo M, Pichon B, Cabaret J, Figureau C, Pérez-Eid C (2000) Methodology for sampling questing nymphs of Ixodes ricinus (Acari: Ixodidae), the principal vector of Lyme disease in Europe. J Med Entomol 37:335–339

    PubMed  CAS  Google Scholar 

  • Vourc’h G, Boyard C, Barnouin J (2008) Mammal and bird species distribution at the woodland-pasture interface in relation to the circulation of ticks and pathogens. Ann N Y Acad Sci (in press)

Download references

Acknowledgments

Very sincere thanks to Michel Pascal for his valuable help concerning small mammal management, to Sarah Samadi and the other colleagues of the ‘Service de Systématique Moléculaire’ of the ‘Muséum National d’Histoire Naturelle’, to Maria Diuk-Wasser for helpful comments on the manuscript, and to Patrick Gasqui for statistical advice. Great thanks to the field team: Valérie Poux, Anne-Sophie Martel, Adrien Debroux, Arnaud Augé-Sabatier, Alexandre Teynié and to the laboratory colleagues who endured field experiences with such good grace. Gratitude to Nelly Dorr for the database maintenance, to Nelly Marquetoux for crystalline lens weighing, and to the farmers for their thoughtful cooperation. A special thanks to the Barrier family for its friendly hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Barnouin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyard, C., Vourc’h, G. & Barnouin, J. The relationships between Ixodes ricinus and small mammal species at the woodland–pasture interface. Exp Appl Acarol 44, 61–76 (2008). https://doi.org/10.1007/s10493-008-9132-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-008-9132-3

Keywords

Navigation