Skip to main content
Log in

Behavioral switching in Magellanic woodpeckers reveals perception of habitat quality at different spatial scales

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

The switching pattern between behavioral modes provides a mechanistic basis for understanding how animals perceive and memorize the habitat quality in their home ranges.

Objectives

We assessed if Magellanic woodpeckers (Campephilus magellanicus) move based on habitat quality at local (neighboring trees) and home range scales.

Methods

We used state-space models to examine the relationship between remotely-sensed estimates of habitat quality (tree decay) and movement of adult woodpeckers tracked with GPS telemetry in southern Chile.

Results

Woodpeckers spent most time (> 80%) in the area-restricted search (ARS) mode in contrast to the exploratory transient mode, characterized by frequent directional displacements (> 50 m). The extent to which individuals switched between behavioral modes was related to habitat quality at different scales. Woodpeckers switched to and remained in the ARS mode when encountering moderate levels of heterogeneity in habitat quality. At very low or high heterogeneity levels, however, individuals switched to and remained in the transient mode, respectively. Likewise, as habitat quality declined locally and across home range, woodpeckers were more likely to adopt a transient mode.

Conclusions

Although woodpeckers seemed to easily perceive and memorize habitat quality at different spatial scales, our results suggest that spatial memory will less effective under extreme levels of habitat heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avgar T, Baker JA, Brown GS, Hagens JS, Kittle AM, Mallon EE, McGreer MT, Mosser A, Newmaster SG, Patterson BR, Reid DEB, Rodgers AR, Shuter J, Street GM, Thompson I, Turetsky MJ, Wiebe PA, Fryxell JM (2015) Space-use behaviour of woodland caribou based on a cognitive movement model. J Anim Ecol 84:1059–1070

    Article  PubMed  Google Scholar 

  • Barraquand F, Benhamou S (2008) Animal movements in heterogeneous landscapes: identifying profitable places and homogeneous movement bouts. Ecology 89:3336–3348

    Article  PubMed  Google Scholar 

  • Berbert JM, Fagan WF (2012) How the interplay between individual spatial memory and landscape persistence can generate population distribution patterns. Ecol Complex 12:1–12

    Article  Google Scholar 

  • Berger-Tal O, Bar-David S (2015) Recursive movement patterns: review and synthesis across species. Ecosphere 6(9):1–12

    Article  Google Scholar 

  • Bestley S, Jonsen ID, Hindell MA, Guinet C, Charrassin JB (2013) Integrative modelling of animal movement: incorporating in situ habitat and behavioural information for a migratory marine predator. Proc R Soc Lond B 280(1750):20122262

    Article  Google Scholar 

  • Bestley S, Jonsen ID, Hindell MA, Harcourt RG, Gales NJ (2015) Taking animal tracking to new depths: synthesizing horizontal–vertical movement relationships for four marine predators. Ecology 96:417–427

    Article  PubMed  Google Scholar 

  • Beyer HL, Morales JM, Murray D, Fortin MJ (2013) The effectiveness of Bayesian state-space models for estimating behavioural states from movement paths. Methods Ecol Evol 4:433–441

    Article  Google Scholar 

  • Breed GA, Jonsen ID, Myers RA, Bowen WD, Leonard ML (2009) Sex-specific, seasonal foraging tactics of adult grey seals (Halichoerus grypus) revealed by state-space analysis. Ecology 90:3209–3221

    Article  PubMed  Google Scholar 

  • Brooks CJ, Harris S (2008) Directed movement and orientation across a large natural landscape by zebras, Equus burchelli antiquorum. Anim Behav 76:277–285

    Article  Google Scholar 

  • Burns JG, Thomson JD (2005) A test of spatial memory and movement patterns of bumblebees at multiple spatial and temporal scales. Behav Ecol 17:48–55

    Article  Google Scholar 

  • Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519

    Article  Google Scholar 

  • Chazarreta L, Ojeda V, Lammertink M (2012) Morphological and foraging behavioral differences between sexes of the Magellanic woodpecker (Campephilus magellanicus). Ornitol Neotrop 23:529–544

    Google Scholar 

  • Cobbold CA, Lutscher F (2014) Mean occupancy time: linking mechanistic movement models, population dynamics and landscape ecology to population persistence. J Math Biol 68:549–579

    Article  PubMed  Google Scholar 

  • Doherty TS, Driscoll DA (2018) Coupling movement and landscape ecology for animal conservation in production landscapes. Proc R Soc Lond B. https://doi.org/10.1098/rspb.2017.2272

    Article  Google Scholar 

  • Doster RH, James DA (1998) Home range size and foraging habitat of red-cockaded woodpeckers in the Ouachita Mountains of Arkansas. Wilson Bull 110:110–117

    Google Scholar 

  • Duron Q, Jiménez JE, Vergara PM, Soto GE, Lizama M, Rozzi R (2018) Intersexual segregation in foraging microhabitat use by Magellanic Woodpeckers (Campephilus magellanicus): seasonal and habitat effects at the world’s southernmost forests. Aust Ecol 43:25–34

    Article  Google Scholar 

  • Fagan WF, Lewis MA, Auger-Methe M, Avgar T, Benhamou S, Breed G, LaDage L, Schlägel UE, Tang W, Papastamatiou Y, Forester J, Mueller T (2013) Spatial memory and animal movement. Ecol Lett 16:1316–1329

    Article  PubMed  Google Scholar 

  • Folse LJ, Packard JM, Grant WE (1989) AI modelling of animal movements in a heterogeneous habitat. Ecol Model 46:57–72

    Article  Google Scholar 

  • Fortin JA Merkle, Sigaud M, Cherry SG, Plante S, Drolet A, Labrecque M (2015) Temporal dynamics in the foraging decisions of large herbivores. Anim Prod Sci 55:376–383

    Article  Google Scholar 

  • Franzreb KE (2006) Implications of home-range estimation in the management of red-cockaded woodpeckers in South Carolina. For Ecol Manag 228:274–284

    Article  Google Scholar 

  • Fryxell JM, Hazell M, Borger L, Dalziel BD, Haydon DT, Morales JM, McIntosh T, Rosatte RC (2008) Multiple movement modes by large herbivores at multiple spatiotemporal scales. Proc Natl Acad Sci 105:19114–19119

    Article  PubMed  Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472

    Article  Google Scholar 

  • Horne JS, Garton EO, Krone SM, Lewis JS (2007) Analyzing animal movements using Brownian bridges. Ecology 88:2354–2363

    Article  PubMed  Google Scholar 

  • Janson CH (1998) Experimental evidence for spatial memory in foraging wild capuchin monkeys, Cebus apella. Anim Behav 55:1229–1243

    Article  CAS  PubMed  Google Scholar 

  • Johnson AR, Wiens JA, Milne BT, Crist TO (1992) Animal movements and population dynamics in heterogeneous landscapes. Landscape Ecol 7:63–75

    Article  Google Scholar 

  • Jonsen I (2016) Joint estimation over multiple individuals improves behavioural state inference from animal movement data. Sci Rep 6:20625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonsen ID, Basson M, Bestley S, Bravington MV, Patterson TA, Pedersen MW, Thomson R, Thygesen UH, Wotherspoon SJ (2013) State-space models for bio-loggers: a methodological road map. Deep Sea Res Part II 88:34–46

    Article  Google Scholar 

  • Jonsen ID, Flemming JM, Myers RA (2005) Robust state-space modeling of animal movement data. Ecology 86:2874–2880

    Article  Google Scholar 

  • Jonsen ID, Myers RA, Flemming JM (2003) Meta-analysis of animal movement using state-space models. Ecology 84:3055–3063

    Article  Google Scholar 

  • Jonsen ID, Myers RA, James MC (2006) Robust hierarchical state-space models reveal diel variation in travel rates of migrating leatherback turtles. J Anim Ecol 75:1046–1057

    Article  PubMed  Google Scholar 

  • Lima SL, Zollner PA (1996) Towards a behavioral ecology of ecological landscapes. Trends Ecol Evol 11:131–135

    Article  CAS  PubMed  Google Scholar 

  • McClintock BT, Michelot T (2018) momentuHMM: r package for generalized hidden Markov models of animal movement. Methods Ecol Evol 9:1518–1530

    Article  Google Scholar 

  • McKellar AE, Langrock R, Walters JR, Kesler DC (2014) Using mixed hidden Markov models to examine behavioral states in a cooperatively breeding bird. Behav Ecol 26:148–157

    Article  Google Scholar 

  • McNamara JM, Houston AI (1987) Memory and the efficient use of information. J Theor Biol 125:385–395

    Article  CAS  PubMed  Google Scholar 

  • Merzlyak MN, Gitelson AA, Chivkunova OB, Rakitin VY (1999) Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol Plant 106:135–141

    Article  CAS  Google Scholar 

  • Morales JM, Ellner SP (2002) Scaling up animal movements in heterogeneous landscapes: the importance of behavior. Ecology 83:2240–2247

    Article  Google Scholar 

  • Morales JM, Haydon DT, Frair J, Holsinger KE, Fryxell JM (2004) Extracting more out of relocation data: building movement models as mixtures of random walks. Ecology 85:2436–2445

    Article  Google Scholar 

  • Morales JM, Fortin D, Frair JL, Merrill EH (2005) Adaptive models for large herbivore movements in heterogeneous landscapes. Landscape Ecol 20:301–316

    Article  Google Scholar 

  • Mueller T, Fagan WF (2008) Search and navigation in dynamic environments-from individual behaviors to population distributions. Oikos 117:654–664

    Article  Google Scholar 

  • Mueller T, Fagan WF, Grimm V (2011) Integrating individual search and navigation behaviors in mechanistic movement models. Theor Ecol 4:341–355

    Article  Google Scholar 

  • Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci 105:19052–19059

    Article  PubMed  Google Scholar 

  • Ojeda V, Chazarreta L (2014) Home range and habitat use by Magellanic Woodpeckers in an old-growth forest of Patagonia. Can J For Res 44:1265–1273

    Article  Google Scholar 

  • Ojeda VS, Chazarreta ML (2006) Provisioning of Magellanic Woodpecker (Campephilus magellanicus) nestlings with vertebrate prey. Wilson J Ornithol 118:251–254

    Article  Google Scholar 

  • Osbourn MS, Connette GM, Semlitsch RD (2014) Effects of fine-scale forest habitat quality on movement and settling decisions in juvenile pond-breeding salamanders. Ecol Appl 24:1719–1729

    Article  PubMed  Google Scholar 

  • Ovaskainen O, Cornell SJ (2003) Biased movement at a boundary and conditional occupancy times for diffusion processes. J Appl Probab 40:557–580

    Article  Google Scholar 

  • Pasinelli G (2000) Oaks (Quercus sp.) and only oaks? Relations between habitat structure and home range size of the middle spotted woodpecker (Dendrocopos medius). Biol Conserv 93:227–235

    Article  Google Scholar 

  • Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J (2008) State-space models of individual animal movement. Trends Ecol Evol 23:87–94

    Article  PubMed  Google Scholar 

  • Pechacek P, d’Oleire-Oltmanns W (2004) Habitat use of the three-toed woodpecker in central Europe during the breeding period. Biol Conserv 116:333–341

    Article  Google Scholar 

  • Polansky L, Kilian W, Wittemyer G (2015) Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state-space models. Proc R Soc Lond B 282(1805):20143042

    Article  Google Scholar 

  • R Development Core Team (2017) R: a language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Schick RS, Loarie SR, Colchero F, Best BD, Boustany A, Conde DA, Halpin PN, Joppa LN, McClellan CM, Clark JS (2008) Understanding movement data and movement processes: current and emerging directions. Ecol Lett 11:1338–1350

    Article  PubMed  Google Scholar 

  • Schultz CB, Crone EE (2001) Edge-mediated dispersal behavior in a prairie butterfly. Ecology 82:1879–1892

    Article  Google Scholar 

  • Seeber G (2003) Satellite geodesy: foundations, methods, and applications. Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Semeniuk CA, Musiani M, Hebblewhite M, Grindal S, Marceau DJ (2012) Incorporating behavioral–ecological strategies in pattern-oriented modeling of caribou habitat use in a highly industrialized landscape. Ecol Model 243:18–32

    Article  Google Scholar 

  • Short LL (1970) The habits and relationships of the Magellanic Woodpecker. Wilson Bull 82:115–129

    Google Scholar 

  • Soto GE, Pérez-Hernández CG, Hahn IJ, Rodewald AD, Vergara PM (2017) Tree senescence as a direct measure of habitat quality: linking red-edge vegetation indices to space use by Magellanic woodpeckers. Remote Sens Environ 193:1–10

    Article  Google Scholar 

  • Soto GE, Vergara PM, Lizama ME, Celis C, Rozzi R, Duron Q, Hahn IJ, Jiménez JE (2012) Do beavers improve the habitat quality for Magellanic Woodpeckers in a subantartic forest of Cape Horn, Chile? Bosque 33:271–274

    Article  Google Scholar 

  • Soto GE, Vergara PM, Smiley A, Lizama ME, Moreira-Arce D, Vásquez RA (2016) Lethal agonistic behavior between two male Magellanic Woodpeckers Campephilus magellanicus observed in the Cape Horn area. Wilson J Ornithol 128:180–184

    Article  Google Scholar 

  • Spiegel O, Crofoot MC (2016) The feedback between where we go and what we know—information shapes movement, but movement also impacts information acquisition. Curr Opin Behav Sci 12:90–96

    Article  Google Scholar 

  • Spiegel O, Leu ST, Bull CM, Sih A (2017) What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol Lett 20:3–18

    Article  PubMed  Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Cambridge

    Google Scholar 

  • Su YS, Yajima M (2015) R2jags: Using R to run ‘JAGS’. R package version 0.5-7

  • Tingley MW, Wilkerson RL, Bond ML, Howell CA, Siegel RB (2014) Variation in home-range size of Black-backed Woodpeckers. Condor 116:325–340

    Article  Google Scholar 

  • Vergara P, Schlatter RP (2004) Magellanic woodpecker (Campephilus magellanicus) abundance and foraging in Tierra del Fuego, Chile. J Ornithol 145:343–351

    Article  Google Scholar 

  • Vergara PM, Meneses L, Saavedra M, Diaz F, Norambuena K, Fierro A, Rodewald A, Soto G (2017) Magellanic woodpeckers living in three national parks of southern Chile: habitat quality and population variation over the last two decades. Avian Conserv Ecol 12(2)

  • Vergara PM, Meneses LO, Grez AA, Quiroz MS, Soto GE, Pérez-Hernández CG, Diaz PA, Hahn IJ, Fierro A (2016b) Occupancy pattern of a long-horned beetle in a variegated forest landscape: linkages between tree quality and forest cover across spatial scales. Landscape Ecol 32:279–293

    Article  Google Scholar 

  • Vergara PM, Saura S, Pérez-Hernández CG, Soto GE (2015) Hierarchical spatial decisions in fragmented landscapes: modeling the foraging movements of woodpeckers. Ecol Model 300:114–122

    Article  Google Scholar 

  • Vergara PM, Soto GE, Moreira-Arce D, Rodewald AD, Meneses LO, Pérez-Hernández CG (2016a) Foraging behaviour in magellanic woodpeckers is consistent with a multi-scale assessment of tree quality. PLoS ONE 11:e0159096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waser LT, Küchler M, Jütte K, Stampfer T (2014) Evaluating the potential of World-View-2 data to classify tree species and different levels of ash mortality. Remote Sens 6:4515–4545

    Article  Google Scholar 

  • Wells AG, Blair CC, Garton EO, Rice CG, Horne JS, Rachlow JL, Wallin DO (2014) The Brownian bridge synoptic model of habitat selection and space use for animals using GPS telemetry data. Ecol Model 273:242–250

    Article  Google Scholar 

  • Zuñiga-Reinoso A (2013) Revisión de los Cerambycidae (Coleoptera) de la región de Magallanes: Lista ilustrada. Anales del Instituto de la Patagonia 41:53–59

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by FONDECYT Grant 1180978 and Proyecto Fondo Fortalecimiento USA1799 (USACH). GES acknowledges W. Hochachka from the Cornell Lab of Ornithology and M. Nazar for their technical support and the Advanced Human Capital Program—CONICYT for supporting his research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo M. Vergara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergara, P.M., Soto, G.E., Rodewald, A.D. et al. Behavioral switching in Magellanic woodpeckers reveals perception of habitat quality at different spatial scales. Landscape Ecol 34, 79–92 (2019). https://doi.org/10.1007/s10980-018-0746-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-018-0746-5

Keywords

Navigation