Skip to main content
Log in

Animal movements and population dynamics in heterogeneous landscapes

  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Organisms respond to environmental heterogeneity at different scales and in different ways. These differences are consequences of how the movement characteristics of animals—their movement rates, directionality, turning frequencies, and turning angles—interact with patch and boundary features in landscape mosaics. The interactions of movement patterns with landscape features in turn produce spatial patterns in individual space-use, population dynamics and dispersion, gene flow, and the redistribution of nutrients and other materials. We describe several theoretical approaches for modeling the diffusion, foraging behavior, and population dynamics of animals in heterogeneous landscapes, including: (1) scaling relationships derived from percolation theory and fractal geometry, (2) extensions of traditional patch-based metapopulation models, and (3) individual-based, spatially explicit models governed by local rules. We conclude by emphasizing the need to couple theoretical models with empirical studies and the usefulness of ‘microlandscape’ investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Ackley, D.H. and Littman, M.S. 1992. Interactions between learning and evolution.In Artificial Life II. pp. 487–509. Edited by C.G. Langton, C. Taylor, J.D. Farmer and S. Rasmussen. Addison-Wesley, Redwood City, CA.

    Google Scholar 

  • Alexander, S. and Orbach, R. 1982. Density of states on fractals: ‘fractons’. J. Physique Lett. 43: L625-L631.

    Google Scholar 

  • Andow, D.A., Kareiva, P.M., Levin, S.A. and Okubo, A. 1990. Spread of invading organisms. Landscape Ecol. 4: 177–188.

    Article  Google Scholar 

  • Angles d’Auriac, J.C., Benoit, A. and Rammal, R. 1983. Random walk on fractals: numerical studies in two dimensions. J. Phys. A—Math. Gen. 16: 4039–4051.

    Article  Google Scholar 

  • Berg, H.C. 1983. Random walks in biology. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Bovet, P. and Benhamou, S. 1988. Spatial analysis of animal movements using a correlated random walk model. J. Theor. Biol. 131: 419–433.

    Article  Google Scholar 

  • Buechner, M.E. 1987. A geometric model of vertebrate dispersal: tests and implications. Ecology 68: 310–318.

    Article  Google Scholar 

  • Burrough, P.A. 1986. Principles of geographical information systems for land resources assessment. Clarendon Press, Oxford.

    Google Scholar 

  • Cairns, J., Jr. (ed.) 1985. Multispecies toxicity testing. Pergamon Press, New York.

    Google Scholar 

  • Collins, R.J. and Jefferson, D.R. 1992. AntFarm: towards simulated evolution.In Artificial Life II. pp. 579–601. Edited by C.G. Langton, C. Taylor, J.D. Farmer and S. Rasmussen. Addison-Wesley, Redwood City, CA.

    Google Scholar 

  • Conrad, M. and Pattee, H.H. 1970. Evolution experiments with an artificial ecosystem. J. Theor. Biol. 28: 393–409.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, M. and Strizich, M. 1985. EVOLVE II: a computer model of an evolving ecosystem. BioSystems 17: 245–258.

    Article  PubMed  CAS  Google Scholar 

  • Dewdney, A.K. 1984. Computer Recreations: Sharks and fish wage in ecological war on the toroidal planet Wa-tor. Sci. Amer. 251(6): 14–22.

    Google Scholar 

  • Emlen, J.M. 1966. The role of time and energy in food preference. Amer. Nat. 100: 611–617.

    Article  Google Scholar 

  • Farhig, L. and Paloheimo, L. 1988. Effects of spatial arrangement of habitat patches on local population size. Ecology 69: 468–475.

    Article  Google Scholar 

  • Forman, R.T.T. and Godron, M. 1986. Landscape ecology. Wiley, New York.

    Google Scholar 

  • Forney, K.A. and Gilpin, M.E. 1989. Spatial structure and population extinction: a study withDrosophila flies. Conservation Biol. 3: 45–51.

    Article  Google Scholar 

  • Fretwell, S.D. and Lucas, H.L. 1969. On territorial behavior and other factors influencing habitat distribution in birds. I. Theoretical development. Acta Biotheoretica 19: 16–36.

    Article  Google Scholar 

  • Gardner, R.H., Milne, B.T., Turner, M.G. and O’Neill, R.V. 1987. Neutral models for the analysis of broad-scale landscape pattern. Landscape Ecol. 1: 19–28.

    Article  Google Scholar 

  • Gefen, Y., Aharony, A. and Alexander, S. 1983. Anomalous diffusion on percolation clusters. Phys. Rev. Lett. 50: 77–80.

    Article  Google Scholar 

  • Giddings, J.M. 1983. Microcosms for assessment of chemical effects on the properties of aquatic ecosystems.In Hazard Assessment of Chemicals, Volume 2. pp. 45–94. Academic Press, New York.

    Google Scholar 

  • Giddings, J.M. 1986. A microcosm procedure for determining safe levels of chemical exposure in shallow-water communities.In Community Toxicity Testing. pp. 121–134. Edited by J. Cairns, Jr. ASTM STP 290. American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  • Giesy, J.P., Jr. (ed.) 1980. Microcosms in ecological research. DOE Symposium Series 52. CONF-781101. U.S. Department of Energy. Washington, DC.

    Google Scholar 

  • Hassell, M.P. and May, R.M. 1973. Stability in insect hostparasite models. J. Anim. Ecol. 42: 693–726.

    Article  Google Scholar 

  • Hastings, A. 1977. Spatial heterogeneity and the stability of predator-prey systems. Theor. Pop. Biol. 12: 37–48.

    Article  CAS  Google Scholar 

  • Havlin, S. and Ben-Avraham, D. 1987. Diffusion and fracton dimensionality on fractals and on percolation clusters. J. Phys. A—Math. Gen. 16: L483-L487.

    Article  Google Scholar 

  • Havlin, S. and Ben-Avraham, D. 1987. Diffusion in disordered media. Adv. Phys. 36: 695–798.

    Article  CAS  Google Scholar 

  • Heath, R.T. 1980. Are microcosms useful for ecosystem analysis?In Microcosms in Ecological Research. pp. 333–347. Edited by J.P. Giesy, Jr. DOE Symposium Series, 52. CONF-781101. U.S. Department of Energy. Washington, DC.

    Google Scholar 

  • Hill, J., IV and Wiegert, R.G. 1980. Microcosms in ecological modelling.In Microcosms in Ecological Research. pp. 138–163. Edited by J.P. Giesy, Jr. DOE Symposium Series 52. CONF-781101. U.S. Department of Energy. Washington, DC.

    Google Scholar 

  • Hogeweg, P. and Hesper, B. 1981. Two predators and a prey in a patchy environment: an application of MICMAC modeling. J. Theor. Biol. 93: 411–432.

    Article  Google Scholar 

  • Hogeweg, P. 1988. MIRROR beyond MIRROR, puddles of LIFE.In Artificial Life. Santa Fe Institute Studies in the Sciences of Complexity, Volume VI. pp. 297–316. Edited by C. Langton. Addison-Wesley. Redwood City, CA.

    Google Scholar 

  • Huffaker, C.B. 1958. Experimental studies on predation: dispersion factors and predator-prey oscillations. Hilgardia 27: 343–383.

    Google Scholar 

  • Ims, R.A. and Stenseth, N.C. 1989. Divided the fruitflies fall. Nature 342: 21–22.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson, D.R., Collins, R., Cooper, C., Dyer, M., Flowers, M., Korf, R., Taylor, C. and Wang, A. 1992. Evolution as a theme in artificial life: the Genesys/Tracker system.In Artificial Life II. pp. 549–578. Edited by C.G. Langton, C. Taylor, J.D. Farmer and S. Rasmussen. Addison-Wesley, Redwood City, CA.

    Google Scholar 

  • Johnson, A.R., Milne, B.T. and Wiens, J.A. (in review). Diffusion in fractal landscapes: squared displacements and first-passage times. Submitted to Ecology.

  • Karieva, P. 1983. Local movement in herbivorous insects: applying a passive diffusion model to mark-recapture field experiments. Oecologia 57: 322–327.

    Article  Google Scholar 

  • Karieva, P. and Shigesada, N. 1983. Analyzing insect movement as a correlated random walk. Oecologia 56: 234–238.

    Article  Google Scholar 

  • King, D.L. 1980. Some cautions in applying results from aquatic microcosms.In Microcosms in Ecological Research. pp. 164–191. Edited by J.P. Giesy, Jr.. DOE Symposium Series 52. CONF-781101. U.S. Department of Energy. Washington, DC.

    Google Scholar 

  • Leffler, J.W. 1980. Microcosmology: theoretical applications of biological models.In Microcosms in Ecological Research. pp. 14–29. Edited by J.P. Giesy, Jr. DOE Symposium Series 52. CONF-781101. U.S. Department of Energy. Washington, DC.

    Google Scholar 

  • Levene, H. 1953. Genetic equilibrium when more than one ecological niche is available. Amer. Nat. 87: 331–333.

    Article  Google Scholar 

  • Levin, S.A. 1974. Dispersion and population interactions. Amer. Nat. 108: 207–228.

    Article  Google Scholar 

  • Levins, R. and MacArthur, R.H. 1966. The maintenance of genetic polymorphism in a spatially heterogeneous environment: variations on a theme by Howard Levene. Amer. Nat. 100: 585–589.

    Article  Google Scholar 

  • Lovejoy, T.E., Bierregaard, R.O., Rylands, A.B., Malcolm, J.R., Quintela, C.E., Harper, L.H., Brown, K.S. Jr., Powell, G.V.N., Schubart, H.O.R. and Hays, M.B. 1986. Edge and other effects of isolation on Amazon forest fragments.In Conservation Biology: The Science of Scarcity and Diversity (M.E. Soulé, ed.), pp. 257–285. Sinaeur Associates. Sunderland, MA.

    Google Scholar 

  • Lubina, J.A. and Levin, S.A. 1988. The spread of a reinvading species: range expansion in the California sea otter. Amer. Nat. 131: 526–543.

    Article  Google Scholar 

  • MacArthur, R.H. and Pianka, E.R. 1966. On optimal use of a patchy environment. Amer. Nat. 100: 603–609.

    Article  Google Scholar 

  • Marsh, L.M. and Jones, R.E. 1988. The form and consequence of random walk movement models. J. Theor. Biol. 133: 113–131.

    Article  Google Scholar 

  • McCarthy, J.F. 1988. Random walks on invasion percolation clusters. J. Phys. A—Math. Gen. 21: 3379–3384.

    Article  Google Scholar 

  • McCullouch, C.E. and Cain, M.L. 1989. Analyzing discrete movement data as a correlated random walk. Ecology 70: 383–388.

    Article  Google Scholar 

  • Metcalf, R.L., Sangha, G.K. and Kapoor, P. 1971. Model ecosystem for the evaluation of pesticide biodegradability and ecological magnification. Environ. Sci. Technol. 5: 709–713.

    Article  CAS  Google Scholar 

  • Milne, B.T. 1991. Lessons from applying fractal models to landscape patterns.In Quantitative Methods in Landscape Ecology. pp. 199–235. Edited by M.G. Turner and R.H. Gardner. Springer-Verlag, Berlin.

    Google Scholar 

  • Milne, B.T., Johnston, K. and Forman, R.T.T. 1989. Scale-dependent proximity of wildlife habitat in a spatially-neutral Bayesian model. Landscape Ecol. 2: 101–110.

    Article  Google Scholar 

  • Milne, B.T., Turner, M.G., Wiens, J.A. and Johnson, A.R. (in press). Interactions between the fractal geometry of landscapes and allometric herbivory. Theor. Pop. Biol.

  • Mitescu, C.D. and Rossenq, J. 1983. Diffusion on percolation clusters.In Percolation Structures and Processes. Annals of the Israel Physical Society. Volume 5. pp. 81–100. Edited by G. Deutscher, R. Zallen and J. Adler. Adam Higler, Bristol.

    Google Scholar 

  • Okubo, A. 1980. Diffusion and ecological problems: mathematical models. Springer-Verlag, Berlin.

    Google Scholar 

  • Opdam, P. 1991. Metapopulation theory and habitat fragmentation: a review of holarctic breeding bird studies. Landscape Ecol. 5: 93–106.

    Article  Google Scholar 

  • Orbach, R. 1986. Dynamics of fractal networks. Science 231: 814–819.

    Article  PubMed  Google Scholar 

  • Oster, G. and Wilson, E.O. 1978. Caste and ecology in the social ants. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Pacala, S.W., Hassell, M.P. and May, R.M. 1990. Host-parasitoid associations in patchy environments. Nature 344: 150–153.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, R.B., Stauffer, D., Margolina, A. and Zabolitzky, J.G. 1984. Diffusion on random systems above, below, and at their percolation threshold in two and three dimension. J. Stat. Phys. 34: 427–450.

    Article  Google Scholar 

  • Peters, R.H. 1983. The ecological implication of body size. Cambridge University Press, New York.

    Google Scholar 

  • Pickett, S. T. A. and White, P. S. 1985. The ecology of natural disturbance and patch dynamics. Academic Press, New York.

    Google Scholar 

  • Pimentel, D., Nagel, W.P. and Madden, J.L. 1963. Space-time structure of the environment and the survival of parasite-host systems. Amer. Nat. 97: 141–167.

    Article  Google Scholar 

  • Pritchard, P.H. 1981. Model ecosystems.In Environmental Risk Analysis for Chemicals. pp. 257–353. Edited by R.A. Conway. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Rammal, R. 1984. Random walk statistics on fractal structures. J. Stat. Phys. 36: 547–560.

    Article  Google Scholar 

  • Rammal, R. and Toulouse, G. 1983. Random walks on fractal structures and percolation clusters. J. Physique Lett. 44: L13-L22.

    Google Scholar 

  • Redner, S. 1983. Recent progress and current puzzles in percolation.In The Mathematics and Physics of Disordered Media: Percolation, Random Walk, Modeling, and Simulation. Lecture Notes in Mathematics, No. 1035. pp. 184–200. Edited by B.D. Hughes and B.W. Ninham. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Risser, P.G., Karr, J.R. and Forman, R.T.T. 1984. Landscape Ecology: Directions and Approaches. Illinois Natural History Survey Special Publication Number 2.

  • Rizki, M.M. and Conrad, M. 1985. EVOLVE III: a discrete events model of an evolutionary ecosystem. BioSystems 18: 121–133.

    Article  PubMed  CAS  Google Scholar 

  • Rizki, M.M. and Conrad, M. 1986. Computing the theory of evolution. Physica D 22: 83–99.

    Article  Google Scholar 

  • Sabelis, M.W. and Diekmann, O. 1988. Overall population stability despite local extinction: the stabilizing effect of prey dispersal from predator-invaded patches. Theor. Pop. Biol. 34: 169–176.

    Article  Google Scholar 

  • Seshardi, V. and West, B.J. 1982. Fractal dimensionality of Lévy processes. Proc. Nat. Acad. Sci. USA 79: 4501–4505.

    Article  Google Scholar 

  • Shirazi, M.A., Lighthart, B. and Gillett, J. 1984. A method for scaling biological response of soil microcosms. Ecol. Modell. 23: 203–226.

    Article  Google Scholar 

  • Shorrocks, B. and Swingland, I.R. (eds.) 1990. Living in a patchy environment. Oxford University Press, Oxford.

    Google Scholar 

  • Shugart, H. H. and West, D.C. 1981. Long-term dynamics of forest ecosystems. Amer. Sci. 69: 647–652.

    Google Scholar 

  • Stamps, J.A., Buechner, M. and Krishnan, V.V. 1987. The effects of habitat geometry on territorial defense costs: intruder pressure in bounded habitats. Amer. Zool. 27: 307–325.

    Google Scholar 

  • Stephens, D.W. and Krebs, J.R. 1986. Foraging theory. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Swihart, R.K., Slade, N.A. and Bergstrom, B.J. 1988. Relating body size to the rate of home range use in mammals. Ecology 69: 393–399.

    Article  Google Scholar 

  • Taub, F.B. 1969. A biological model of a freshwater community: a gnotobiotic ecosystem. Limnol. Oceanogr. 14: 136–142.

    Article  Google Scholar 

  • Taub, F.B. and Crow, M.E. 1980. Synthesizing aquatic microcosms.In Microcosms in Ecological Research. pp. 69–104. Edited by J.P. Giesy, Jr. DOE Symposium Series 52. CONF-781101. U.S. Department of Energy. Washington, DC.

    Google Scholar 

  • Taylor, A.D. 1990. Metapopulation, dispersal, and predatorprey dynamics: an overview. Ecology 71: 429–433.

    Article  Google Scholar 

  • Taylor, C.E., Jefferson, D.R., Turner, S.R. and Goldman, S.R. 1988. RAM: artificial life for the exploration of complex biological systems.In Artificial Life. Santa Fe Institute Studies in the Sciences of Complexity, Volume VI. pp. 275–295. Edited by C. Langton. Addison-Wesley, Redwood City, CA.

    Google Scholar 

  • Turner, M.G. 1989. Landscape ecology: the effects of pattern on process. Ann. Rev. Ecol. Syst. 20: 171–197.

    Article  Google Scholar 

  • Van den Ende, P. 1973. Predator-prey interactions in continuous culture. Science 181: 562–564.

    Article  PubMed  Google Scholar 

  • Vandermeer, J.H. 1973. On the regional stability of locally unstable predator-prey relationships. J. Theor. Biol. 41: 161–170.

    Article  PubMed  CAS  Google Scholar 

  • Van Voris, P., Tolle, D.A., Arthur, M.F. and Chesson, J. 1985. Terrestrial microcosms: applications, validation and costbenefit analysis.In Multispecies Toxicity Testing. pp. 117–142. Edited by J. Cairns, Jr. Pergamon Press, New York.

    Google Scholar 

  • Wasserman, P.D. 1989. Neural computing: theory and practice. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Watt, A.S. 1947. Pattern and process in the plant community. J. Ecol. 35: 1–22.

    Article  Google Scholar 

  • Wiener, R.S. and Pinson, L.J. 1990. TheC ++ workbook. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Wiens, J.A. (in press). Ecological flows across landscape boundaries: a conceptual overview.In Landscape Boundaries. Edited by F. di Castri and A.D. Hansen. Springer-Verlag, New York.

  • Wiens J.A. 1990. On the use of ‘grain’ and ‘grain size’ in ecology. Functional Ecology 4: 720.

    Google Scholar 

  • Wiens, J.A. 1989. Spatial scaling in ecology. Functional Ecology 3: 385–397.

    Article  Google Scholar 

  • Wiens, J.A. and Milne, B.T. 1989. Scaling of ‘landscapes’ in landscape ecology, or landscape ecology from a beetle’s perspective. Landscape Ecol. 3: 87–96.

    Article  Google Scholar 

  • Ziegler, B.P. 1977. Persistence and patchiness of predator-prey systems induced by discrete event population exchange mechanisms. J. Theor. Biol. 67: 687–713.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, A.R., Wiens, J.A., Milne, B.T. et al. Animal movements and population dynamics in heterogeneous landscapes. Landscape Ecol 7, 63–75 (1992). https://doi.org/10.1007/BF02573958

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02573958

Keywords

Navigation