Skip to main content

Advertisement

Log in

The pond network: can structural connectivity reflect on (amphibian) biodiversity patterns?

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Landscape connectivity is a very recurrent theme in landscape ecology as it is considered pivotal for the long term conservation of any organism’s populations. Nevertheless, this complex concept is still surrounded by uncertainty and confusion, largely due to the separation between structural and functional connectivity. Amphibians are the most threatened vertebrates around the globe, in Europe mostly due to habitat alteration, and to their particular life cycle. Pond breeding amphibians are considered to be organised in metapopulations, enhancing the importance of landscape connectivity in this group of animals. We sampled the amphibian species present in two pond groups in Central Western Spain. We applied the graph theory framework to these two pond networks in order to determine the importance of each pond for the entire network connectivity. We related the pond importance for connectivity with the species richness present in each pond. We tested if connectivity (partially) determined the presence of the amphibian species sampled using logistic regression. The results show that the structural connectivity of the pond network impacts on the amphibian species richness pattern and that the importance of the pond for the connectivity of the network is an important factor for the presence of some species. Our results, hence, attest the importance of (structural) landscape connectivity determining the pattern of amphibian (functional) colonization in discrete ponds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alarcos G, Ortiz-Santaliestra ME, Lizana M, Aragón A, Fernández-Benéitez MJ (2003) La colonización de medios acuáticos por anfibios como herramienta para su conservación: el ejemplo de Arribes del Duero. Munibe 16:114–127

    Google Scholar 

  • Arens P, van der Sluis T, van’t Westende W, Vosman B, Vos C, Smulders M (2007) Genetic population differentiation and connectivity among fragmented moor frog (Rana arvalis) populations in The Netherlands. Landscape Ecol 22:1489–1500

    Article  Google Scholar 

  • Bailey D, Schmidt-Entling MH, Eberhart P, Herrmann JD, Hofer G, Kormann U, Herzog F (2010) Effects of habitat amount and isolation on biodiversity in fragmented traditional orchards. J Appl Ecol 47:1003–1013

    Google Scholar 

  • Baguette M (2003) Long distance dispersal and landscape occupancy in a metapopulation of the cranberry fritillary butterfly. Ecography 26:153–160

    Google Scholar 

  • Becker CG, Fonseca CR, Haddad CFB, Batista RF, Prado PI (2007) Habitat split and the global decline of amphibians. Science 318:1775–1777

    Article  PubMed  CAS  Google Scholar 

  • Blaustein AR, Wake DB, Sousa WP (1994) Amphibian declines: judging stability, persistence, and susceptibility of populations to local and global extinctions. Conserv Biol 8:60–71

    Article  Google Scholar 

  • Bodin Ö, Norberg J (2007) A network approach for analyzing spatially structured populations in fragmented landscape. Landscape Ecol 22:31–44

    Article  Google Scholar 

  • Bowne DR, Bowers MA (2004) Interpatch movements in spatially structured populations: a literature review. Landscape Ecol 19:1–20

    Article  Google Scholar 

  • Broquet T, Ray N, Petit E, Fryxell J, Burel F (2006) Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landscape Ecol 21:877–889

    Article  Google Scholar 

  • Cantwell MD, Forman RTT (1993) Landscape graphs: ecological modeling with graph theory to detect configurations common to diverse landscapes. Landscape Ecol 8:239–255

    Article  Google Scholar 

  • Compton BW, McGarigal K, Cushman SA, Gamble LR (2007) A resistant-kernel model of connectivity for amphibians that breed in vernal pools. Conserv Biol 21:788–799

    Article  PubMed  Google Scholar 

  • Crooks KR, Sanjayan MA (2006) Connectivity conservation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cunningham JM, Calhoun AJK, Glanz WE (2009) Pond-breeding amphibian species richness and habitat selection in a beaver-modified landscape. J Wildl Manag 71:2517–2526

    Article  Google Scholar 

  • Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240

    Article  Google Scholar 

  • Gross J, Yellen J (2006) Graph theory and its applications. CRC Press, Boca Raton

    Google Scholar 

  • Harary E (1969) Graph theory. Addison-Wesley, Reading USA, Massachusetts.

    Google Scholar 

  • Jordán F, Magura T, Tóthmérész B, Vasas V, Ködöböcz V (2007) Carabids (Coleoptera: Carabidae) in a forest patchwork: a connectivity analysis of the Bereg plain landscape graph. Landscape Ecol 22:1527–1539

    Article  Google Scholar 

  • Knutson MG, Richardson WB, Reineke DM et al (2004) Agricultural ponds support amphibian populations. Ecol Appl 14:669–684

    Article  Google Scholar 

  • Kovar R, Brabec M, Vita R, Bocek R (2009) Spring migration distances of some Central European amphibian species. Amphibia-Reptilia 30:367–378

    Article  Google Scholar 

  • Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845

    Article  Google Scholar 

  • Minor ES, Urban DL (2008) A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv Biol 22:297–307

    Article  PubMed  Google Scholar 

  • Minor ES, Tessel SM, Engelhardt KAM, Lookingbill TR (2009) The role of landscape connectivity in assembling exotic plant communities: a network analysis. Ecology 90:1802–1809

    Article  PubMed  Google Scholar 

  • Miracle MR, Oertli B, Céréghino R, Hull A (2010) Preface: conservation of european ponds-current knowledge and future needs. Limnetica 29(1):1–8

    Google Scholar 

  • Neville H, Dunham J, Peacock M (2006) Assessing connectivity in salmonid fishes with DNA microsatellite markers. In: Crooks KR, Sanjayan MA (eds) Connectivity conservation. Cambridge University Press, Cambridge

  • Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the priorization of habitat patches and corridors for conservation. Landscape Ecol 21:959–967

    Article  Google Scholar 

  • Peinado LM, Rivas-Marlinez S (1987) La Vegetación en España. Universidad de Alcalá de Henares, Madrid

    Google Scholar 

  • Pleguezuelos JM, Márquez R, Lizana M (2002) Atlas y libro rojo de los anfibios y reptiles de españa. Dirección General de la Conservación de la Naturaleza-AHE, Madrid

    Google Scholar 

  • Prevedello J, Vieira M (2009) Does the type of matrix matter? A quantitative review of the evidence. Biodiversity Conserv

  • Proulx SR, Promislow DEL, Phillips PC (2005) Network thinking in ecology and evolution. Trends Ecol Evol 20:345–353

    Article  PubMed  Google Scholar 

  • Risser PG, Karr JR, Forman RTT (1984) Landscape ecology: directions and approaches. Natural History Survey, Champaign, Illinois Special Publ. 2

    Google Scholar 

  • Russell AP, Bauer AM, Johnson MK (2005) Migration in amphibians and reptiles: an overview of patterns and orientation mechanisms in relation to life history strategies. In: Elewa AMT (ed) Migration of organisms: climate, geography, ecology. Springer, Berlin, pp 151–203

    Google Scholar 

  • Saura S, Torné J (2009) Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ Model Softw 24:135–139

    Article  Google Scholar 

  • Sillero N, Celaya L, Martín-Alfageme S (2005) Using GIS to make an atlas: a proposal to collect, store, map and analyse chorological data for herpetofauna. Revista Española De Herpetologia 19:87–101

    Google Scholar 

  • Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128

    Article  Google Scholar 

  • Stevens V, Polus E, Wesselingh R, Schtickzelle N, Baguette M (2004) Quantifying functional connectivity: experimental evidence for patch-specific resistance in the Natterjack toad (Bufo calamita). Landscape Ecol 19:829–842

    Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe OL, Thomas CD (1996) Open corridors appear to facilitate dispersal by ringlet butterflies (Aphantopus hyperantus) between woodland clearings. Conserv Biol 10:1359–1365

    Google Scholar 

  • Taylor P, Fahrig L, With K (2006) Landscape connectivity: a return to basics. In: Crooks KR, Sanjayan M (eds) Connectivity conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Temple HJ, Cox NA (2009) European red list of amphibians. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Tischendorf L, Fahrig L (2000) How should we measure landscape connectivity? Landscape Ecol 15:633–641

    Article  Google Scholar 

  • Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205–1218

    Article  Google Scholar 

  • Vasas V, Magura T, Jordán F, Tóthmérész B (2009) Graph theory in action: evaluating planned highway tracks based on connectivity measures. Landscape Ecol 24:581–586

    Article  Google Scholar 

  • Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? a view from the world of amphibians. PNAS 105:11466–11473

    Article  PubMed  CAS  Google Scholar 

  • Walker R, Novaro A, Branch L (2007) Functional connectivity defined through cost-distance and genetic analyses: a case study for the rock-dwelling mountain vizcacha (Lagidium viscacia) in Patagonia, Argentina. Landscape Ecol 22:1303–1314

    Google Scholar 

  • Watts K, Eycott A, Handley P, Ray D, Humphrey J, Quine C (2010) Targeting and evaluating biodiversity conservation action within fragmented landscapes: an approach based on generic focal species and least-cost networks. Landscape Ecol 25:1305–1318

    Google Scholar 

Download references

Acknowledgments

R. Ribeiro is financed by a PhD grant (SFRH/BD/31046/2006) from the Foundation for Science and Technology Portugal (FCT). N. Sillero is supported by post-doctoral positions (SFRH/BPD/26666/2006) also from FCT. Field work was financed by Consejería de Medio Ambiente de Zamora. We would like to thank Arie van der Meijden for final language editing and the constructive comments from two anonymous referees on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, R., Carretero, M.A., Sillero, N. et al. The pond network: can structural connectivity reflect on (amphibian) biodiversity patterns?. Landscape Ecol 26, 673–682 (2011). https://doi.org/10.1007/s10980-011-9592-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-011-9592-4

Keywords

Navigation