Skip to main content
Log in

Enhancing the ignition and combustion performance of aluminum by surface modification: tannic acid and tea polyphenols

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Aluminum has been long and widely used in propellants, thermite, and pyrotechnics. However, the commonly used micron aluminum has the problems of slow burning rate and incomplete release of chemical energy in the combustion process. Therefore, finding ways to promote the ignition and combustion of aluminum is essential to enhance the performance of aluminum-based energetic materials. Herein, environmentally friendly tannic acid (TA) and tea polyphenols (TP) were used to surface modify aluminum to improve its combustion performance, respectively. The results showed that TA and TP could be coated on the outer surface of aluminum particles effectively by solvent evaporation induced self-assembly method. Heat was released during the thermal decomposition of the composite particles, which was clearly beneficial in promoting aluminum ignition. Ignition and combustion tests showed that after modification with TA and TP, the samples showed shorter ignition delay, increased combustion time, increased combustion intensity, and reduced agglomeration compared to pure aluminum. This revealed that the modified samples possessed better ignition and combustion properties. The X-ray diffraction patterns of the condensed combustion products showed that the products of pure aluminum possessed more active aluminum and aluminum nitride, while the samples modified with TA and TP had more γ-Al2O3 and α-Al2O3, suggesting that TA and TP could effectively enhance the combustion efficiency of aluminum. In addition, TP showed better modification than TA, which may be related to the higher heat release during thermal decomposition of TP. Although TA and TP can improve the ignition and combustion performance of aluminum to some extent, the enhancement effect is limited. Considering that TA and TP possess good adhesion, perhaps they can play a better role in promoting as intermediate layers in the future. It is hoped that this paper can provide a new idea for the surface modification of aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sundaram DS, Puri P, Yang V. A general theory of ignition and combustion of nano- and micron-sized aluminum particles. Combust Flame. 2016;169:94–109. https://doi.org/10.1016/j.combustflame.2016.04.005.

    Article  CAS  Google Scholar 

  2. Beckstead MW, Liang Y, Pudduppakkam KV. Numerical simulation of single aluminum particle combustion (review). Combust Explos Shock Waves. 2005;41(6):622–38.

    Article  Google Scholar 

  3. Ao W, Liu X, Rezaiguia H, Liu H, Wang Z, Liu P. Aluminum agglomeration involving the second mergence of agglomerates on the solid propellants burning surface: experiments and modeling. Acta Astronaut. 2017;136:219–29. https://doi.org/10.1016/j.actaastro.2017.03.013.

    Article  CAS  Google Scholar 

  4. Jayaraman K, Chakravarthy SR, Sarathi R. Accumulation of nano-aluminum during combustion of composite solid propellant mixtures. Combust Explos Shock Waves. 2010;46(1):21–9.

    Article  Google Scholar 

  5. Galfetti L, DeLuca LT, Severini F, Colombo G, Meda L, Marra G. Pre and post-burning analysis of nano-aluminized solid rocket propellants. Aerosp Sci Technol. 2007;11(1):26–32. https://doi.org/10.1016/j.ast.2006.08.005.

    Article  CAS  Google Scholar 

  6. Pang W-Q, Yetter RA, DeLuca LT, Zarko V, Gany A, Zhang X-H. Boron-based composite energetic materials (B-CEMs): preparation, combustion and applications. Prog Energy Combust Sci. 2022;93: 101038. https://doi.org/10.1016/j.pecs.2022.101038.

    Article  Google Scholar 

  7. Terry BC, Gunduz IE, Pfeil MA, Sippel TR, Son SF. A mechanism for shattering microexplosions and dispersive boiling phenomena in aluminum–lithium alloy based solid propellant. Proc Combust Inst. 2017;36(2):2309–16. https://doi.org/10.1016/j.proci.2016.06.099.

    Article  CAS  Google Scholar 

  8. Yavor Y, Rosenband V, Gany A. Reduced agglomeration resulting from nickel coating of aluminum particles in solid propellants. Int J Energetic Mater Chem Propuls. 2010;9(6):477–92.

    Article  Google Scholar 

  9. Ao W, Fan Z, Liu L, An Y, Ren J, Zhao M, et al. Agglomeration and combustion characteristics of solid composite propellants containing aluminum-based alloys. Combust Flame. 2020;220:288–97. https://doi.org/10.1016/j.combustflame.2020.07.004.

    Article  CAS  Google Scholar 

  10. Sippel TR, Son SF, Groven LJ. Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles. Combust Flame. 2014;161(1):311–21. https://doi.org/10.1016/j.combustflame.2013.08.009.

    Article  CAS  Google Scholar 

  11. Xiao F, Liang T. Preparation of hierarchical core-shell Al-PTFE@TA and Al-PTFE@TA-Fe architecture for improving the combustion and ignition properties of aluminum. Surf Coat Technol. 2021;412: 127073. https://doi.org/10.1016/j.surfcoat.2021.127073.

    Article  CAS  Google Scholar 

  12. Xiao F, Zhang H, Liu W, Zhang J, Liang T, Hu J, et al. Enhanced combustion performance of core-shell aluminum with poly(vinylidene fluoride) interfacial layer: constructing the combination bridge of aluminum powder and poly(vinylidene fluoride). Surf Coat Technol. 2022;439: 128410. https://doi.org/10.1016/j.surfcoat.2022.128410.

    Article  CAS  Google Scholar 

  13. Jiang Y, Deng S, Hong S, Tiwari S, Chen H, Nomura KI, et al. Synergistically chemical and thermal coupling between graphene oxide and graphene fluoride for enhancing aluminum combustion. ACS Appl Mater Interfaces. 2020;12(6):7451–8. https://doi.org/10.1021/acsami.9b20397.

    Article  CAS  PubMed  Google Scholar 

  14. Zhu B, Zhang S, Sun Y, Ji Y, Wang J. Fluorinated graphene improving thermal reaction and combustion characteristics of nano-aluminum powder. Thermochim Acta. 2021;705: 179038. https://doi.org/10.1016/j.tca.2021.179038.

    Article  CAS  Google Scholar 

  15. McCollum J, Pantoya ML, Iacono ST. Activating aluminum reactivity with fluoropolymer coatings for improved energetic composite combustion. ACS Appl Mater Interfaces. 2015;7(33):18742–9. https://doi.org/10.1021/acsami.5b05238.

    Article  CAS  PubMed  Google Scholar 

  16. Chen C, Liu B, Lan S, Gou X, Hu J, Xiao F, et al. Study on exothermic effect of surface modified porous aluminum. Colloids Surf A. 2023;671: 131649. https://doi.org/10.1016/j.colsurfa.2023.131649.

    Article  CAS  Google Scholar 

  17. Zhu B, Li F, Sun Y, Wu Y, Shi W, Han W, et al. Enhancing ignition and combustion characteristics of micron-sized aluminum powder in steam by adding sodium fluoride. Combust Flame. 2019;205:68–79. https://doi.org/10.1016/j.combustflame.2019.02.007.

    Article  CAS  Google Scholar 

  18. Ji Y, Sun Y, Zhu B, Liu J, Wu Y. Calcium fluoride promoting the combustion of aluminum powder. Energy. 2022;250: 123772. https://doi.org/10.1016/j.energy.2022.123772.

    Article  CAS  Google Scholar 

  19. Zhou X, Gong L, Huang F, Yang R, Li J. Mechanism of the organic fluoride effect on the formation of agglomerates and condensed products in the combustion of aluminised solid propellants. Combust Theor Model. 2019;24(1):1–14. https://doi.org/10.1080/13647830.2019.1649727.

    Article  CAS  Google Scholar 

  20. Xiao F, Liu Z, Liang T, Yang R, Li J, Luo P. Establishing the interface layer on the aluminum surface through the self-assembly of tannic acid (TA): improving the ignition and combustion properties of aluminum. Chem Eng J. 2021;420: 130523. https://doi.org/10.1016/j.cej.2021.130523.

    Article  CAS  Google Scholar 

  21. Tang D, Chen S, Liu X, He W, Yang G, Liu P-J, et al. Controlled reactivity of metastable n-Al@Bi(IO3)3 by employment of tea polyphenols as an interfacial layer. Chem Eng J. 2020;381: 122747. https://doi.org/10.1016/j.cej.2019.122747.

    Article  CAS  Google Scholar 

  22. Liao X, Liu J, Xu P, Sun M. AP and nFe2O3 synergistically improve the ignition and combustion performance of aluminum particles. J Therm Anal Calorim. 2023;148(21):11669–81. https://doi.org/10.1007/s10973-023-12493-7.

    Article  CAS  Google Scholar 

  23. Dreizin EL, Schoenitz M. Correlating ignition mechanisms of aluminum-based reactive materials with thermoanalytical measurements. Prog Energy Combust Sci. 2015;50:81–105. https://doi.org/10.1016/j.pecs.2015.06.001.

    Article  Google Scholar 

  24. Trunov MA, Schoenitz M, Dreizin EL. Ignition of aluminum powders under different experimental conditions. Propellants Explos Pyrotech. 2005;30(1):36–43. https://doi.org/10.1002/prep.200400083.

    Article  CAS  Google Scholar 

  25. Yuan J, Liu J, Zhou Y, Wang J, Xv T. Aluminum agglomeration of AP/HTPB composite propellant. Acta Astronaut. 2019;156:14–22. https://doi.org/10.1016/j.actaastro.2018.11.009.

    Article  CAS  Google Scholar 

  26. Liu J, Yuan J, Li H, Pang A, Xu P, Tang G, et al. Thermal oxidation and heterogeneous combustion of AlH3 and Al: a comparative study. Acta Astronaut. 2021;179:636–45. https://doi.org/10.1016/j.actaastro.2020.11.039.

    Article  CAS  Google Scholar 

  27. Trunov MA, Schoenitz M, Dreizin EL. Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles. Combust Theor Model. 2006;10(4):603–23. https://doi.org/10.1080/13647830600578506.

    Article  CAS  Google Scholar 

  28. Yuan J, Liu J, Zhou Y, Zhang Y, Cen K. Thermal decomposition and combustion characteristics of Al/AP/HTPB propellant. J Therm Anal Calorim. 2020;143(6):3935–44. https://doi.org/10.1007/s10973-020-09297-4.

    Article  CAS  Google Scholar 

  29. Liang Y, Beckstead MW. Numerical simulation of quasi-steady, single aluminum particle combustion in air. in 36th AIAA Aerospace Sciences Meeting and Exhibit; Reno 1998.

  30. Ao W, Liu P, Liu H, Wu S, Tao B, Huang X, et al. Tuning the agglomeration and combustion characteristics of aluminized propellants via a new functionalized fluoropolymer. Chem Eng J. 2020;382: 122987. https://doi.org/10.1016/j.cej.2019.122987.

    Article  CAS  Google Scholar 

  31. Utigard TA, Friesen K, Roy RR, Lim J, Silny A, Dupuis C. The properties and uses of fluxes in molten aluminum processing. JOM. 1998;50(11):38–43.

    Article  CAS  Google Scholar 

  32. Liu H, Ao W, Hu Q, Liu P, Hu S, Liu L, et al. Effect of RDX content on the agglomeration, combustion and condensed combustion products of an aluminized HTPB propellant. Acta Astronaut. 2020;170:198–205. https://doi.org/10.1016/j.actaastro.2020.01.038.

    Article  CAS  Google Scholar 

  33. Cohen NS. A pocket model for aluminum agglomeration in composite propellants. AIAA J. 1983;21(5):720–5. https://doi.org/10.2514/3.8139.

    Article  CAS  Google Scholar 

  34. Liao X, Pei J, Xie P, Hu Y, Liu J. Aluminum particle agglomeration characteristics and suppression method during the combustion of aluminum-based solid propellants: a review. Propellants Explos Pyrotech. 2024;49(1): e202300131. https://doi.org/10.1002/prep.202300131.

    Article  CAS  Google Scholar 

  35. Liu H, Ao W, Liu P, Hu S, Lv X, Gou D, et al. Experimental investigation on the condensed combustion products of aluminized GAP-based propellants. Aerosp Sci Technol. 2020;97: 105595. https://doi.org/10.1016/j.ast.2019.105595.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Liu.

Ethics declarations

Conflict of interest

The authors does not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, X., Du, L., Sun, M. et al. Enhancing the ignition and combustion performance of aluminum by surface modification: tannic acid and tea polyphenols. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13084-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13084-w

Keywords

Navigation