Skip to main content
Log in

Accumulation of nano-aluminium during combustion of composite solid propellant mixtures

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Nano-aluminium particles are produced using the electric wire explosion process in an inert atmosphere at our institute. This paper reports the characterization of nanoaluminium particles in combination with other solid propellant ingredients for their thermal and combustion behaviour. High-heating-rate hot-stage microscopic experiments are performed with different mixtures of propellant ingredients. The effects of addition of nano-aluminium versus micron-sized aluminium in the middle lamina of sandwiches are analyzed for burning rates and by means of scanning electron microscope and transmission electron microscope micrographs of quench-collected aluminium agglomerates. Nano-aluminized sandwiches with thinner middle lamina show slightly higher burning rates than micron-sized aluminized ones. The quenched surface of nano-aluminized sandwiches shows relatively smaller aluminium agglomerates than with micron-sized aluminium. The resultant particle sizes of nano-aluminium agglomerates is in the range of 1–5 µm, which indicates a higher rate of agglomeration than with micro-aluminium, but these sizes are small relative to the agglomerates of the latter. This is also confirmed by quench-collected agglomerates of nano-aluminium emerging from the burning surface of a composite propellant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Romodanova and P. F. Pokhil “Action of silica on the burning rates of ammonium perchlorate compositions,” Fiz. Goreniya Vzryva, 6, No. 3, 285–290 (1970).

    Google Scholar 

  2. A. Dokhan, E. W. Price, J. M. Seitzman, and R. K. Sigman, “The effects of bimodal aluminium with ultra-fine aluminium on the burning rates of solid propellants,” Proc. Combust. Inst., 29, 2939–2945 (2002).

    Article  Google Scholar 

  3. Y. F. Ivanov, M. N. Osmonoliev, V. S. Sedoi, V. A. Arkhipov, S. S. Bondarchuk, A. B. Vorozhtsov, A. G. Korotkikh, and V. T. Kuznetsov, “Productions of ultra-fine powders and their use in high energetic compositions,” Propellants, Explos., Pyrotech., 28, 319–333 (2003).

    Article  Google Scholar 

  4. R. Sarathi, T. K. Sindhu, and S. R. Chakravarthy, “Generation of nano-aluminium powder through wire explosion process and its characterization,” Mater. Charact., 58, No. 2, 148–155 (2007).

    Article  Google Scholar 

  5. R. Sarathi, T. K. Sindhu, and S. R. Chakravarthy, “Impact of binary gas on nano-aluminium particle formation through wire explosion process,” Mater. Lett., 61, Nos. 8–9, 1823–1826 (2007).

    Article  Google Scholar 

  6. T. K. Sindhu, R. Sarathi, and S. R. Chakravarthy, “Generation and characterization of nano-aluminium powder obtained through wire explosion process,” Bull. Mater. Sci., 30, No. 2, 1–9 (2007).

    Article  Google Scholar 

  7. Q. S. M. Kwok, R. C. Fouchard, A.-M. Turcotte, P. D. Lightfoot, R. Bowes, and D. E. G. Jones, “Characterization of aluminium nanopowder compositions,” Propellants, Explos., Pyrotech., 27, 229–240 (2002).

    Article  Google Scholar 

  8. L. Liu, F. Li, L. Tan, L. Ming, and Y. Yi, “Effects of nanometer Ni, Cu, Al, and NiCu powders on the thermal decomposition of ammonium perchlorate,” Propellants, Explos., Pyrotech., 29, 34–38 (2004).

    Article  Google Scholar 

  9. L. T. De Luca, L. Galfetti, F. Severini, L. Meda, G. Marra, A. B. Vorozhtsov, V. S. Sedoi, and V. A. Babuk, “Burning of nano-aluminized composite rocket propellants,” Combust., Expl., Shock Waves, 41, No. 6, 680–692 (2005).

    Article  Google Scholar 

  10. L. Galfetti, L. T. De Luca, F. Severini, L. Meda, G. Marra, M. Marchetti, M. Regi, and S. Bellucci, “Nanoparticles for solid propellant combustion,” J. Phys.-Condens. Matter, 18, S1991–S2005 (2006).

    Article  ADS  Google Scholar 

  11. L. Galfetti, L. T. De Luca, F. Severini, G. Colombo, L. Meda, and G. Marra, “Pre and post-burning analysis of nano-aluminized solid rocket propellants,” Aerospace Sci. Technol., 11, 26–32 (2007).

    Article  Google Scholar 

  12. A. Pivkina, P. Ulyanova, Y. Frolov, S. Zavyalov, and J. Schoonman, “Nanomaterials for heterogeneous combustion,” Propellants, Explos., Pyrotech., 29, 39–48 (2004).

    Article  Google Scholar 

  13. K. Jayaraman, K. V. Anand, D. S. Bhatt, S. R. Chakravarthy, and R. Sarathi, “Production, characterization, and combustion of nano-aluminium in composite solid propellants,” J. Propuls. Power, 25, No. 2, 471–481 (2009).

    Article  Google Scholar 

  14. K. Jayaraman, K. V. Anand, S. R. Chakravarthy, and R. Sarathi, “Effect of nano-aluminium in plateau-burning and catalyzed composite solid propellant combustion,” Combust. Flame, 153, 1662–1673 (2009).

    Article  Google Scholar 

  15. J. K. Sambamurthi, E. W. Price, and R. K. Sigman, “Aluminium agglomeration in solid propellant combustion,” AIAA J., 22, 1132–1138 (1984).

    Article  ADS  Google Scholar 

  16. E. W. Price, “Effect of multi-dimensional flamelets in composite propellant combustion,” J. Propuls. Power, 11, No. 4, 717–728 (1995).

    Article  Google Scholar 

  17. S. R. Chakravarthy, E. W. Price, and R. K. Sigman “Anomalous deflagration behaviour of ammonium perchlorate at elevated pressures,” J. Propuls. Power, 19, No. 1, 56–65 (2003).

    Article  Google Scholar 

  18. A. Dokhan, “The effects of aluminium particle size on aluminized propellant combustion,” Ph. D. Thesis, Georgia Institute of Technology (2002).

  19. E. W. Price, “Combustion of metallized propellants,” in: K. K. Kuo and M. Summerfield (eds.), Progress in Astronautics and Aeronautics, Vol. 90: Fundamentals of Solid Propellant Combustion (1984), pp. 478–513.

  20. V. Rosenband, “Thermo-mechanical aspects of the heterogeneous ignition of metals,” Combust. Flame, 137, 366–375 (2004).

    Article  Google Scholar 

  21. R. K. Sigman, E. K. Zachary, S. R. Chakravarthy, J. M. Freeman, and E. W. Price, “Preliminary characterization of the combustion behaviour of Alex in solid propellants,” in: 34th JANNAF Combustion Meeting, West Palm Beach (1997).

  22. Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, “Effect of particle size on combustion of aluminium particle dust in air,” Combust. Flame, 156, 5–13 (2009).

    Article  Google Scholar 

  23. S.-T. Lee, E. W. Price, and R. K. Sigman, “Effect of multi-dimensional flamelets in composite propellant combustion,” J. Propuls. Power, 10, No. 6, 761–768 (1994).

    Article  Google Scholar 

  24. M. Navaneethan, V. Srinivas, and S. R. Chakravarthy, “Coupling of leading edge flames in the combustion zone of composite solid propellants,” Combust. Flame, 153, 574–592 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Chakravarthy.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 46, No. 1, pp. 26–35, January–February, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayaraman, K., Chakravarthy, S.R. & Sarathi, R. Accumulation of nano-aluminium during combustion of composite solid propellant mixtures. Combust Explos Shock Waves 46, 21–29 (2010). https://doi.org/10.1007/s10573-010-0004-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-010-0004-x

Key words

Navigation