Skip to main content
Log in

Energy-efficient low-temperature activated desiccant wheels with nano-desiccant-coated fiber matrix

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Air-conditioning system applies dehumidification by condensation technique, where the cooling coil handles both latent and sensible load. Energy consumption by the system increases by handling both loads. In order to reduce operating energy and load on cooling coil, latent load needs to be reduced or eliminated. Latent load can be handled separately using desiccant-type dehumidifiers irrespective of cooling coil temperature. This paper investigates the dehumidification performance of a desiccant wheels (DWs) made of fiber paper substrates such as Ceramic Fiber, Glass Fiber, Wood Pulp Fiber, Nomex Fiber, and Brown Wood Pulp Paper (BWPP) coated with synthesized mesoporous nano-titania desiccant for energy-efficient air-conditioning. Moisture adsorption ability test was conducted for different fiber papers at 30 °C and 75% RH, where BWPP has maximum moisture adsorption of 38 g m−2 and 0.42 g g−1 due to its hydrophilic nature, with the highest coating ratio of 3.5 g cm−3. The thermal conductivity, nitrogen adsorption/desorption isotherm, pore structure, and thermal stability of the fiber substrates were also analyzed before and after coating. The thermal conductivity of the fiber papers coated with nano-titania desiccant has enhanced compared to the raw fiber papers, and it reaches 0.116 W m−1 K−1 for BWPP. The dehumidification coefficient of performance of BWPP–DW at a 1:1 airflow area ratio, 60 °C regeneration temperature, and 10 rph is 0.82. The BWPP matrix DWs can be reactivated by low-grade energy sources with 0.82 kg kW−1 h−1 and saves energy up to 2.39 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

t :

Time (s)

V :

Volume (cm3)

W :

Moisture adsorption quantity (g m−2 and g g-1)

T :

Temperature (K)

p :

Water vapor pressure (N m−2)

R :

Ideal gas constant for water vapor (J g−1 K−1)

k :

Rate coefficient (s−1)

K :

Thermal conductivity (W m−1 K−1)

RH:

Relative humidity (%)

A :

Surface area of raw substrates (m2)

\(\dot{m}\) :

Mass flow rate (kg s−1)

\(L\) :

Latent heat of vaporization of water (kJ kg−1)

\(h\) :

Specific enthalpy (kJ kg−1)

Q :

Thermal energy input (kW)

H :

Enthalpy (kJ kg−1)

m :

Mass (g)

E :

Energy (kW)

C :

Specific heat capacity (kJ kg1 K−1)

Ψ:

Energy-saving potential

Δω :

Dehumidification capacity (kg kg1)

Δm :

Moisture adsorbed (g)

γ :

Coating ratio (g cm−3)

1:

Inlet

2:

Outlet

P:

Process

R:

Regeneration

°:

Saturation

D:

Dry desiccant

A:

Surface area

t:

Adsorbed at any time

i:

Sample coated with desiccant after drying

j:

Desiccant-coated sample in the jth dip coat

o:

Raw substrate

pr:

Constant pressure

a:

Ambient

h:

Heater

*:

At the higher regeneration temperature

DCOP:

Dehumidification coefficient of performance

LDF:

Linear driving force

BJH:

Barrett–Joyner–Halenda

BET:

Brunauer–Emmett–Teller

DTG:

Derivative thermogravimetric

DTA:

Differential thermal analyzer

BWPP:

Brown wood pulp paper

NFP:

Nomex fiber paper

WPFP:

Wood pulp fiber paper

CFP:

Ceramic fiber paper

GFP:

Glass fiber paper

XRD:

X-ray diffraction

COD:

Coefficient of determination

SEM:

Scanning electron microscope

TGA:

Thermogravimetric analyzer

FTIR:

Fourier transform infrared spectroscopy

rph:

Revolution per hour

MRE:

Moisture removal efficiency (kg  kW-1 h−1)

RMR:

Rate of moisture removal (kg s−1)

References

  1. Sohani A, Sayyaadi H, Azimi M. Employing static and dynamic optimization approaches on a desiccant-enhanced indirect evaporative cooling system. Energy Convers Manag. 2019;199:112017. https://doi.org/10.1016/j.enconman.2019.1120171.

    Article  Google Scholar 

  2. Areemit N, Sakamoto Y. Numerical and experimental analysis of a passive room-dehumidifying system using the sorption property of a wooden attic space. Energy Build. 2007;39(3):317–27. https://doi.org/10.1016/j.enbuild.2006.07.007.

    Article  Google Scholar 

  3. Coney JER, Sheppard CGW, Ei-Shafei EAM. Fin performance with condensation from humid air: a numerical investigation. Int J Heat Fluid Flow. 1989;10:224–31.

    Article  Google Scholar 

  4. Sani AL, Ayani M, Behbahani-Nia SA, Shafee A, Babazadeh H. Presentation of new approach for energy consumption reduction with use of solar system. J Therm Anal Calorim. 2021;143:705–14. https://doi.org/10.1007/s10973-019-09252-y.

    Article  CAS  Google Scholar 

  5. Jani DB, Mishra M, Sahoo PK. Solid desiccant air conditioning—a state of the art review. Renew Sustain Energy Rev. 2016;60:1451–69. https://doi.org/10.1016/j.rser.2016.03.031.

    Article  CAS  Google Scholar 

  6. Jani DB, Mishra M, Sahoo PK. Experimental investigation on solid desiccant-vapor compression hybrid air-conditioning system in hot and humid weather. Appl Therm Eng. 2016;104:556–64. https://doi.org/10.1016/j.applthermaleng.2016.05.104.

    Article  Google Scholar 

  7. Pakari A, Ghani S. Performance comparison of different flow arrangements of 4-fluid internally-cooled liquid desiccant dehumidifiers. J Therm Anal Calorim. 2022;147:10439–59. https://doi.org/10.1007/s10973-022-11283-x.

    Article  CAS  Google Scholar 

  8. Kummer H, et al. A functional full-scale heat exchanger coated with aluminum fumarate metal-organic framework for adsorption heat transformation. Ind Eng Chem Res. 2017;56:8393–8. https://doi.org/10.1021/acs.iecr.7b00106.

    Article  CAS  Google Scholar 

  9. Das A, Sharma R, Thirunavukkarasu V, Cheralathan M. Desiccant-based water production from humid air using concentrated solar energy. J Therm Anal Calorim. 2022;147:2641–51. https://doi.org/10.1007/s10973-021-10558-z.

    Article  CAS  Google Scholar 

  10. Wu XN, Ge TS, Dai YJ, Wang RZ. Review on substrate of solid desiccant dehumidification system. Renew Sustain Energy Rev. 2018;82:3236–49. https://doi.org/10.1016/j.rser.2017.10.021.

    Article  Google Scholar 

  11. Bharathi ALK, Hussain SI, Kalaiselvam S. Performance evaluation of various fiber paper matrix desiccant wheels coated with nano-adsorbent for energy efficient dehumidification. Int J Refrig. 2023;146:416–29. https://doi.org/10.1016/j.ijrefrig.2022.12.002.

    Article  CAS  Google Scholar 

  12. Zheng X, Wang RZ, Ge TS, Hu LM. Performance study of SAPO-34 and FAPO-34 desiccants for desiccant coated heat exchanger systems. Energy. 2015;93:88–94. https://doi.org/10.1016/j.energy.2015.09.024.

    Article  CAS  Google Scholar 

  13. Chen C-H, Huang P-C, Yang T-H, Chiang Y-C, Chen S-L. Polymer/alumina composite desiccant combined with periodic total heat exchangers for air-conditioning systems. Int J Refrig. 2016;67:10–21. https://doi.org/10.1016/j.ijrefrig.2016.01.003.

    Article  CAS  Google Scholar 

  14. Al-Alili A, Hwang Y, Radermacher R. Performance of a desiccant wheel cycle utilizing new zeolite material: experimental investigation. Energy. 2015;81:137–45. https://doi.org/10.1016/j.energy.2014.11.084.

    Article  CAS  Google Scholar 

  15. Vivekh P, Bui DT, Islam MR, Zaw K, Chua KJ. Experimental performance and energy efficiency investigation of composite superabsorbent polymer and potassium formate coated heat exchangers. Appl Energy. 2020;275:115428. https://doi.org/10.1016/j.apenergy.2020.115428.

    Article  CAS  Google Scholar 

  16. IEEE Engineering in Medicine and Biology Society. Annual Conference (33rd : 2011 : Boston, Mass. ), & Institute of Electrical and Electronics Engineers. 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society : [proceedings] : August 30–September 3.2011; Boston, MA, USA. IEEE

  17. Tu R, Liu XH, Jiang Y. Performance comparison between enthalpy recovery wheels and dehumidification wheels. Int J Refrig. 2013;36:2308–22. https://doi.org/10.1016/j.ijrefrig.2013.07.014.

    Article  Google Scholar 

  18. Al-Sharqawi HS, Lior N. Effect of flow-duct geometry on solid desiccant dehumidification. Ind Eng Chem Res. 2008;47:1569–85. https://doi.org/10.1021/ie0707319.

    Article  CAS  Google Scholar 

  19. de Antonellis S, Joppolo CM, Molinaroli L. Simulation, performance analysis and optimization of desiccant wheels. Energy Build. 2010;42:1386–93. https://doi.org/10.1016/j.enbuild.2010.03.007.

    Article  Google Scholar 

  20. Yu H, Seo SW, Miksík F, Thu K, Miyazaki T, Ng KC. Effects of temperature and humidity ratio on the performance of desiccant dehumidification system under low-temperature regeneration. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-022-11368-7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang L-Z. Transient and conjugate heat and mass transfer in hexagonal ducts with adsorbent walls. Int J Heat Mass Transf. 2015;84:271–81. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.029.

    Article  Google Scholar 

  22. Tianjian L. Ultralight porous metals: from fundamentals to applications. Acta Mech Sin. 2002;18:457–79. https://doi.org/10.1007/BF02486571.

    Article  Google Scholar 

  23. Nawaz K, Bock J, Dai Z, Jacobi AM. Experimental studies to evaluate the use of metal foams in highly compact air-cooling heat exchangers. http://docs.lib.purdue.edu/iracc/1150

  24. Fathieh F, et al. Determination of air-to-air energy wheels latent effectiveness using humidity step test data. Int J Heat Mass Transf. 2016;103:501–15. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.046.

    Article  CAS  Google Scholar 

  25. Hu LM, Ge TS, Jiang Y, Wang RZ. Performance study on composite desiccant material coated fin-tube heat exchangers. Int J Heat Mass Transf. 2015;90:109–20. https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.033.

    Article  CAS  Google Scholar 

  26. Jeong J, Yamaguchi S, Saito K, Kawai S. Performance analysis of desiccant dehumidification systems driven by low-grade heat source. Int J Refrig. 2011;34:928–45. https://doi.org/10.1016/j.ijrefrig.2010.10.001.

    Article  CAS  Google Scholar 

  27. Fang Y, et al. Microwave hydrothermal synthesis and performance of NaA zeolite monolithic adsorbent with honeycomb ceramic matrix. Appl Energy. 2020. https://doi.org/10.1016/j.micromeso.2017.09.027.

    Article  Google Scholar 

  28. Bhabhor KK, Jani DB. Progressive development in solid desiccant cooling: a review. Int J Amb Energy. 2022;43(1):992–1015. https://doi.org/10.1080/01430750.2019.1681293.

    Article  Google Scholar 

  29. Perkins HH, Brushwood DE. Arsenic acid desiccant residues in cotton. Trans Am Soc Agric Eng. 1991;34(4):1629–32. https://doi.org/10.13031/2013.31780.

    Article  Google Scholar 

  30. Karmakar A, Prabakaran V, Zhaoa D, Chua KJ. A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications. Appl Energy. 2020. https://doi.org/10.1016/j.apenergy.

    Article  Google Scholar 

  31. Abdelgaied M, Saber MA, Bassuoni MM, Khaira AM. Performance improvement of solar-assisted air-conditioning systems by using an innovative configuration of a desiccant dehumidifier and thermal recovery unit. J Therm Anal Calorim. 2023. https://doi.org/10.1007/s10973-023-12215-z.

    Article  Google Scholar 

  32. Enteria N, et al. Performance of solar-desiccant cooling system with silica-gel (SiO2) and titanium dioxide (TiO2) desiccant wheel applied in East Asian climates. Sol Energy. 2012;86:1261–79. https://doi.org/10.1016/j.solener.2012.01.018.

    Article  CAS  Google Scholar 

  33. Dong C, Lu L, Wen T. Experimental study on dehumidification performance enhancement by TiO2 super hydrophilic coating for liquid desiccant plate dehumidifiers. Build Environ. 2017;124:219–31. https://doi.org/10.1016/j.buildenv.2017.08.010.

    Article  Google Scholar 

  34. Eicker U, et al. Experimental investigations on desiccant wheels. Appl Therm Eng. 2020;42:71–80. https://doi.org/10.1016/j.applthermaleng.2012.03.005.

    Article  CAS  Google Scholar 

  35. Chua KJ, Chou SK, Islam MR. On the experimental study of a hybrid dehumidifier comprising membrane and composite desiccants. Appl Energy. 2018;220:934–43. https://doi.org/10.1016/j.apenergy.2017.12.116.

    Article  Google Scholar 

  36. Niu JL, Zhang LZ. Effects of wall thickness on the heat and moisture transfers in desiccant wheels for air dehumidification and enthalpy recovery. Int Commun Heat Mass Transfer. 2002;29(2):255–68. https://doi.org/10.1016/S0735-1933(02)00316-0.

    Article  CAS  Google Scholar 

  37. Liang Y, Sun S, Deng T, Ding H, Chen W, Chen Y. The preparation of TiO2 film by the sol-gel method and evaluation of its self-cleaning property. Materials. 2018. https://doi.org/10.3390/ma11030450.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sriharan G, Harikrishnan S, Kalaiselvam S, Oztop HF, Abu-Hamdeh N. Experimental investigation on the heat transfer performance of MHTHS using ethylene glycol-based nanofluids. J Therm Anal Calorim. 2021;143(1):61–71. https://doi.org/10.1007/s10973-020-09764-y.

    Article  CAS  Google Scholar 

  39. Patidar V, Jain P. Green synthesis of TiO2 nanoparticle using moringa oleifera leaf extract. www.irjet.net

  40. Nagaraj G, et al. Facile synthesis of improved anatase TiO2 nanoparticles for enhanced solar-light driven photocatalyst. SN Appl Sci. 2020. https://doi.org/10.1007/s42452-020-2554-1.

    Article  Google Scholar 

  41. Ge TS, Dai YJ, Wang RZ, Li Y. Experimental investigation on a one-rotor two-stage rotary desiccant cooling system. Energy. 2008;33:1807–15. https://doi.org/10.1016/j.energy.2008.08.006.

    Article  Google Scholar 

  42. Wu XN, Ge TS, Dai YJ, Wang RZ. Investigation on novel desiccant wheel using wood pulp fiber paper with high coating ratio as matrix. Energy. 2019;176:493–504. https://doi.org/10.1016/j.energy.2019.04.006.

    Article  CAS  Google Scholar 

  43. Li H, Dai YJ, Li Y, La D, Wang RZ. Experimental investigation on a one-rotor two-stage desiccant cooling/heating system driven by solar air collectors. Appl Therm Eng. 2011;31:3677–83. https://doi.org/10.1016/j.applthermaleng.2011.01.018.

    Article  CAS  Google Scholar 

  44. Eicker U, et al. Experimental investigations on desiccant wheels. Appl Therm Eng. 2012;42:71–80. https://doi.org/10.1016/j.applthermaleng.2012.03.005.

    Article  CAS  Google Scholar 

  45. Setyawan H, Yuwana M, Balgis R. PEG-templated mesoporous silicas using silicate precursor and their applications in desiccant dehumidification cooling systems. Microporous Mesoporous Mater. 2015;218:95–100. https://doi.org/10.1016/j.micromeso.2015.07.009.

    Article  CAS  Google Scholar 

  46. Chen CH, Hsu CY, Chen CC, Chiang YC, Chen SL. Silica gel/polymer composite desiccant wheel combined with heat pump for air-conditioning systems. Energy. 2016;94:87–99. https://doi.org/10.1016/j.energy.2015.10.139.

    Article  CAS  Google Scholar 

  47. Hiremath CR, Kadoli R, Katti VV. Experimental and theoretical study on dehumidification potential of clay-additives based CaCl2 composite desiccants. Appl Therm Eng. 2018;129:70–83. https://doi.org/10.1016/j.applthermaleng.2017.09.127.

    Article  CAS  Google Scholar 

  48. Singh A, Kumar S, Dev R. Studies on cocopeat, sawdust and dried cow dung as desiccant for evaporative cooling system. Renew Energy. 2019;142:295–303. https://doi.org/10.1016/j.renene.2019.04.122.

    Article  CAS  Google Scholar 

  49. Luo Y, et al. Dry gel conversion synthesis and performance of glass-fiber MIL-100(Fe) composite desiccant material for dehumidification. Microporous Mesoporous Mater. 2020;297:110034. https://doi.org/10.1016/j.micromeso.2020.110034.

    Article  CAS  Google Scholar 

  50. Chen Q, Zhang X, Wang F. Experimental study of thermal diffusion enhanced vapor transfer performance with perhydropolysilazane-derived silica (PDS) coating membranes in air dehumidification process. Int J Refrig. 2021;122:21–32. https://doi.org/10.1016/j.ijrefrig.2020.11.003.

    Article  CAS  Google Scholar 

  51. Yeskendir B, Dacquin J-P, Lorgouilloux Y, Courtois C, Royer S, Dhainaut J. From metal–organic framework powders to shaped solids: recent developments and challenge. Mater Adv. 2021;2:7139–86. https://doi.org/10.1039/D1MA00630D.

    Article  CAS  Google Scholar 

  52. Zhang XJ, Dai YJ, Wang RZ. A simulation study of heat and mass transfer in a honeycombed rotary desiccant dehumidifier. Appl Therm Eng. 2003;23:989–1003.

    Article  Google Scholar 

  53. Moffat RJ. Describing the uncertainties in experimental results. Exp Thermal Fluid Sci. 1988;1:3–17. https://doi.org/10.1016/0894-1777(88)90043-X.

    Article  Google Scholar 

  54. Angrisani G, Roselli C, Sasso M. Effect of rotational speed on the performances of a desiccant wheel. Appl Energy. 2013;104:268–75. https://doi.org/10.1016/j.apenergy.2012.10.05.

    Article  Google Scholar 

  55. Zeng Y, Woods J, Cui S. The energy saving potential of thermo-responsive desiccants for air dehumidification. Energy Convers Manag. 2021;244:114520. https://doi.org/10.1016/j.enconman.2021.114520.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Department of Science and Technology (DST), New Delhi for their financial support to carry out this research work under the DST-TDT scheme (DST-TDT File No. DST/TDT/LCCT-03/2017). One of the authors, U. Harish Kumar likes to thank “Anna Centenary Research Fellowship—ACRF” (CFR/ACRF/21122291330/Ph.D./AR9) granted by the Centre for Research (CFR), Anna University, India.

Author information

Authors and Affiliations

Authors

Contributions

UHK did conceptualization, methodology, data curation, investigation, writing—original draft. SIH done review and editing. SK contributed to conceptualization, methodology, investigation, resources, writing—review and editing, and supervision.

Corresponding author

Correspondence to S. Kalaiselvam.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, U.H., Hussain, S.I. & Kalaiselvam, S. Energy-efficient low-temperature activated desiccant wheels with nano-desiccant-coated fiber matrix. J Therm Anal Calorim 148, 11511–11533 (2023). https://doi.org/10.1007/s10973-023-12506-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12506-5

Keywords

Navigation