Skip to main content
Log in

Desiccant-based water production from humid air using concentrated solar energy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The extraction of water from atmospheric air is a beneficial solution to solve the crisis of freshwater shortage. The usage of desiccant material to absorb water vapor from ambient air during the nighttime, followed by regeneration using a heat source during the daytime, is getting increased attention nowadays to produce potable water. In this study, the usage of short cylinder-type receiver along with a 16-m2 Scheffler-type solar concentrator system is experimented as a heat source for regeneration purpose. Silica gel is used as the desiccant material for performing the experiments. Tests are conducted on different radiation conditions to assess water extraction possibilities of the solar dish-receiver system. The experiment shows a maximum adsorption capacity of the silica gel as 0.25 g g−1 at a temperature of 25 °C and relative humidity of 80%. The results reveal that for the average beam radiation of 624 W m−2, the maximum receiver temperature is 132 °C and the corresponding water collection is 105 mL kg−1 of silica gel in a day with a total system efficiency of 10.9%. For a low value of average beam radiation of 370 W m−2, the maximum receiver temperature is observed as 109 °C and its corresponding water extraction is 64 mL kg−1 of silica gel in a day with a total system efficiency of 11.3%. The possible ways for performance enhancement of the system for increased yield are also presented. This system has the potential to be employed in the temperature range 30–340 °C, especially in remote and decentralized areas where there is no electricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

The authors declare that all the data supporting the findings of this study are available within the article.

Abbreviations

\(A_{{{\text{ap}}}}\) :

Effective aperture area of reflector dish (m2)

\(A_{{\text{f}}}\) :

Surface area of the elliptical frame of reflector dish (m2)

\(A_{{\text{R}}}\) :

Aperture area of receiver (m2)

\(I_{{\text{b}}}\) :

Solar beam radiation (W m2)

\(I_{{{\text{b}},{\text{t}}}}\) :

Total solar beam radiation (kJ m2)

\(Q_{{\text{D}}}\) :

Concentrated solar radiation power or dish power (kW)

\(Q_{{\text{L}}}\) :

Overall rate of heat loss (kW)

\(Q_{{\text{R}}}\) :

Receiver power (kW)

\(Q_{{\text{S}}}\) :

Solar radiation power on the reflector dish (kW)

\(m_{{\text{w}}}\) :

Mass of water evaporated (kg)

L :

Latent heat of water at average bed temperature (kJ kg1)

\(\delta_{{\text{i}}}\) :

Solar declination angle (°)

\(\eta_{{{\text{opt}}}}\) :

Combined optical efficiency of reflector dish (%)

\(a\) :

Semi-minor axis of the elliptical frame of reflector dish (m)

\(b\) :

Semi-major axis of the elliptical frame of reflector dish (m)

\(n\) :

Day of the year

A :

Initial cost of the system

S :

Salvage value

n :

Useful life of the system

i :

Annual interest rate

CRF:

Capital recovery factor

SFF:

Sinking fund factor

INR:

Indian rupees

TGA:

Thermogravimetric analysis

References

  1. Kariman H, Hoseinzadeh S, Shirkhani A, Heyns PS, Wannenburg J. Energy and economic analysis of evaporative vacuum easy desalination system with brine tank. J Therm Anal Calorim. 2020;140:1935–44. https://doi.org/10.1007/s10973-019-08945-8.

    Article  CAS  Google Scholar 

  2. Abualhamayel HI, Gandhidasan P. A method of obtaining fresh water from humid atmosphere. Desalination. 1997;113(1):51–63. https://doi.org/10.1016/S0011-9164(97)00114-8.

    Article  CAS  Google Scholar 

  3. Gad HE, Hamed AM, El-Sharkawy II. Application of a solar desiccant/collector system for water recovery from atmospheric air. Renew Energy. 2001;22(4):541–56. https://doi.org/10.1016/S0960-1481(00)00112-9.

    Article  CAS  Google Scholar 

  4. Gordeeva LG, Tokarev MM, Parmon VN, Aristov YI. Selective water sorbents for multiple application, 6: freshwater production from the atmosphere. React Kinet Catal Lett. 1998;65:153–9. https://doi.org/10.1007/BF02475329.

    Article  CAS  Google Scholar 

  5. Kabeel AE. Application of sandy bed solar collector system for water extraction from air. Int J Energy Res. 2006;30(6):381–94. https://doi.org/10.1002/er.1155.

    Article  Google Scholar 

  6. Kabeel AE. Water production from air using multi-shelves solar glass pyramid system. Renew Energy. 2007;32(1):157–72. https://doi.org/10.1016/j.renene.2006.01.015.

    Article  CAS  Google Scholar 

  7. Kabeel AE, Abdulaziz M, El-Said EMS. Solar-based atmospheric water generator utilisation of a fresh water recovery: a numerical study. Int J Ambient Energy. 2016;37(1):68–75. https://doi.org/10.1080/01430750.2014.882864.

    Article  Google Scholar 

  8. Kim H, Yang S, Rao SR, Narayanan S, Kapustin EA, Furukawa H, Umans AS, Yaghi OM, Wang EN. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science. 2017;356:430–4.

    Article  CAS  PubMed  Google Scholar 

  9. Kumar M, Yadav A, Mehla N. Water generation from atmospheric air by using different composite desiccant materials. Int J Ambient Energy. 2017. https://doi.org/10.1080/01430750.2017.1392350.

    Article  Google Scholar 

  10. Kumar M, Yadav A. Experimental investigation of solar powered water production from atmospheric air by using composite desiccant material ‘CaCl2/saw wood.’ Desalination. 2015;367:216–22. https://doi.org/10.1016/j.desal.2015.04.009.

    Article  CAS  Google Scholar 

  11. Kumar M, Yadav A. Solar-driven technology for freshwater production from atmospheric air by using the composite desiccant material ‘CaCl2/floral foam.’ Environ Dev Sustain. 2016;18(4):1151–65. https://doi.org/10.1007/s10668-015-9693-3.

    Article  Google Scholar 

  12. Mohamed MH, William GE, Fatouh M. Solar energy utilization in water production from humid air. Sol Energy. 2017;148:98–109. https://doi.org/10.1016/j.solener.2017.03.066.

    Article  CAS  Google Scholar 

  13. Talaat MA, Awad MM, Zeidan EB, Hamed AM. Solar-powered portable apparatus for extracting water from air using desiccant solution. Renew Energy. 2018;119:662–74. https://doi.org/10.1016/j.renene.2017.12.050.

    Article  CAS  Google Scholar 

  14. Tu Y, Wang R, Zhang Y, Wang J. Progress and expectation of atmospheric water harvesting. Joule. 2018;2(8):1452–75. https://doi.org/10.1016/j.joule.2018.07.015.

    Article  CAS  Google Scholar 

  15. Wang JY, Liu JY, Wang RZ, Wang LW. Experimental research of composite solid sorbents for fresh water production driven by solar energy. Appl Therm Eng. 2017;121:941–50. https://doi.org/10.1016/j.applthermaleng.2017.04.161.

    Article  CAS  Google Scholar 

  16. William GE, Mohamed MH, Fatouh M. Desiccant system for water production from humid air using solar energy. Energy. 2015;90:1707–20. https://doi.org/10.1016/j.energy.2015.06.125.

    Article  CAS  Google Scholar 

  17. Srivastava S, Yadav A. Economic analysis of water production from atmospheric air using Scheffler reflector. Appl Water Sci. 2019;9:3. https://doi.org/10.1007/s13201-018-0883-7.

    Article  CAS  Google Scholar 

  18. Sultan A. Absorption/regeneration non-conventional system for water extraction from atmospheric air. Renew Energy. 2002;1:1515–35. https://doi.org/10.1016/S0960-1481(03)00020-X.

    Article  CAS  Google Scholar 

  19. Alahmer A, Al-Dabbas M, Alsaqoor S, Al-Sarayreh A. Utilizing of Solar energy for extracting freshwater from atmospheric air. Appl Sol Energy. 2018;54:110–8. https://doi.org/10.3103/S0003701X18020044.

    Article  Google Scholar 

  20. Xu J, Li T, Chao J, Wu S, Yan T, Li W, Cao B, Wang R. Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt. Angew Chem Int Ed Engl. 2020;59(13):5202–10. https://doi.org/10.1002/anie.201915170.

    Article  CAS  PubMed  Google Scholar 

  21. Jani DB, Bhabhor K, Dadi M. A review on use of TRNSYS as simulation tool in performance prediction of desiccant cooling cycle. J Therm Anal Calorim. 2020;140:2011–31. https://doi.org/10.1007/s10973-019-08968-1.

    Article  CAS  Google Scholar 

  22. Al-Obaidi AR. Investigation of fluid field analysis, characteristics of pressure drop and improvement of heat transfer in three-dimensional circular corrugated pipes. J Energy Storage. 2019;26:101012. https://doi.org/10.1016/j.est.2019.101012.

    Article  Google Scholar 

  23. Al-Obaidi AR, Sharif A. Investigation of the three-dimensional structure, pressure drop, and heat transfer characteristics of the thermohydraulic flow in a circular pipe with different twisted-tape geometrical configurations. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09244-y.

    Article  Google Scholar 

  24. Al-Obaidi AR. Analysis of the flow field, thermal performance, and heat transfer augmentation in circular tube using different dimple geometrical configurations with internal twisted-tape insert. Heat Transf. 2020. https://doi.org/10.1002/htj.21821.

    Article  Google Scholar 

  25. Lapotin A, Kim H, Rao SR, Wang EN. Adsorption-based atmospheric water harvesting: impact of material and component properties on system-level performance. Acc Chem Res. 2019;52(6):1588–97. https://doi.org/10.1021/acs.accounts.9b00062.

    Article  CAS  PubMed  Google Scholar 

  26. Wang J, Dang Y, Meguerdichian AG, Dissanayake S, Kapuge TK, Bamonte S, Tobin ZM, Achola LA, Suib SL. Water harvesting from the atmosphere in arid areas with manganese dioxide. Environ Sci Technol Lett. 2020;7(1):48–53. https://doi.org/10.1021/acs.estlett.9b00713.

    Article  CAS  Google Scholar 

  27. Qi H, Wei T, Zhao W, Zhu B, Liu G, Wang P, Lin Z, Wang X, Li X, Zhang X, Zhu J. An interfacial solar-driven atmospheric water generator based on a liquid sorbent with simultaneous adsorption–desorption. Adv Mater. 2019;31(43):e1903378. https://doi.org/10.1002/adma.201903378.

    Article  CAS  PubMed  Google Scholar 

  28. Thirunavukkarasu V, Cheralathan M. An experimental study on energy and exergy performance of a spiral tube receiver for solar parabolic dish concentrator. Energy. 2020. https://doi.org/10.1016/j.energy.2019.116635.

    Article  Google Scholar 

  29. Velmurugan V, Kumar KJN, Haq TN, Srithar K. Performance analysis in stepped solar still for effluent desalination. Energy. 2009;34:1179–86. https://doi.org/10.1016/j.energy.2009.04.029.

    Article  CAS  Google Scholar 

  30. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1:3–17. https://doi.org/10.1016/0894-1777(88)90043-x.

    Article  Google Scholar 

  31. Cheng EJ, Thompson T, Salvador J, Wang H, Maloney R, Sakamoto J. Cast-in-place, ambiently-dried, silica, high-temperature insulation. Acta Mater. 2017;127(1):450–62. https://doi.org/10.1016/j.actamat.2017.01.060.

    Article  CAS  Google Scholar 

  32. Govind, Tiwari GN. Economic analysis of some solar energy systems. Energy Convers Manag. 1984;24(2):131–5.

    Article  Google Scholar 

  33. Kim H, Rao SR, Kapustin EA, Zhao L, Yang S, Yaghi OM, Wang EN. Adsorption-based atmospheric water harvesting device for arid climates. Nat Commun. 2018;9:1191. https://doi.org/10.1038/s41467-018-03162-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors like to thank the management of SRM Institute of Science and Technology, Kattankulathur, for the support and encouragement for carrying out this research work. The authors also like to thank the organizing committee of ICAME 2020 for motivation and support.

Funding

The authors declare that they did not receive any specific grant from the funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Avipsita Das conceived the study. Avipsita Das, Rohan Sharma, and V. Thirunavukkarasu developed the experimental setup under the supervision of M. Cheralathan. Avipsita Das and Rohan Sharma carried out the experiments and data analysis under the supervision of V. Thirunavukkarasu and M. Cheralathan. V. Thirunavukkarasu, Avipsita Das, and Rohan Sharma wrote the manuscript with the inputs of all authors.

Corresponding author

Correspondence to V. Thirunavukkarasu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest in publishing this article.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Sharma, R., Thirunavukkarasu, V. et al. Desiccant-based water production from humid air using concentrated solar energy. J Therm Anal Calorim 147, 2641–2651 (2022). https://doi.org/10.1007/s10973-021-10558-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10558-z

Keywords

Navigation