Skip to main content
Log in

Preparation and thermal behavior of palmitic acid/activated carbon from corncob as phase change materials for thermal energy storage

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research, the effects of activated carbon from corncob (ACC) biomass as the supporting material were investigated on leakage problem and thermal properties of palmitic acid (PA) as a phase change material (PCM) for thermal energy storage, using the impregnation method. The leakage test demonstrated that the addition of ACC significantly reduced the leakage of PA. Furthermore, it was evident from ATR-FTIR spectra and XRD results that PA and ACC did not undergo any chemical reactions, and the crystal structure of PA was not changed, while the ACC was amorphous. According to the SEM result, ACC had a porous structure, and its increase in PA caused a larger pore volume and a higher specific surface area, which could prevent the leakage of PA. The thermal stability of the composites was measured by TGA. The results revealed that the addition of ACC slightly accelerated the pyrolysis of PA, improved the thermal conductivity of PA, and had enough thermal stability below 150 °C to be suitable for building and solar thermal energy storage applications. DSC analysis of the form-stable PCM showed a melting temperature of 61.25 °C and a melting latent heat of 81.57 J g−1, and demonstrated high thermal reliability after 10 cycles, indicating excellent energy storage capacity. The BET test revealed that the ACC with 1364.70 m2 g−1 have a great potential to use for supporting material, and the composites were mesoporous, which prevented the leakage of PA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Venkateswarlu K, Ramakrishna K. Recent advances in phase change materials for thermal energy storage-a review. J Braz Soc Mech Sci Eng. 2022;44:1–17.

    Article  Google Scholar 

  2. Zhang Y, Zheng S, Zhu S, Ma J, Sun Z, Farid M. Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage. Energy Convers Manag. 2018;171:361–70.

    Article  CAS  Google Scholar 

  3. Fu X, Liu Z, Wu B, Wang J, Lei J. Preparation and thermal properties of stearic acid/diatomite composites as form-stable phase change materials for thermal energy storage via direct impregnation method. J Therm Anal Calorim. 2016;123:1173–81.

    Article  CAS  Google Scholar 

  4. Zhang Y, Zhang X, Xu X, Lu M. Derivation of thermal properties of phase change materials based on T-history method. J Energy Storage. 2020;27:1–10.

    Article  Google Scholar 

  5. Gӧksu H, Aydınlı E, Hekimoğlu G, Sarı A. Activated carbon nanotube/polyacrylic acid/stearyl alcohol nanocomposites as thermal energy storage effective shape-stabilized phase change materials. Surf Interfaces J. 2022;31:1–10.

    Google Scholar 

  6. Tan N, Hao Y, Ping N, Yang H, Qi F, Chuan L, et al. Silica-confined composite form-stable phase change materials: a review. J Therm Anal Calorim. 2021;147:7077–97.

  7. Yang H, Wang Y, Yu Q, Cao G, Sun X, Yang R, et al. Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage. Energy. 2018;159:929–36.

    Article  CAS  Google Scholar 

  8. Tofani K, Tiari S. Nano-enhanced phase change materials in latent heat thermal energy storage systems: a review. Energies. 2021;14:2–34.

    Article  Google Scholar 

  9. Rolka P, Przybylinski T, Kwidzinski R, Lackowski M. The heat capacity of low-temperature phase change materials (PCM) applied in thermal energy storage systems. Renew Energy. 2021;172:541–50.

    Article  CAS  Google Scholar 

  10. Yang K, Venkataraman M, Zhang X, Wiener J, Zhu G, Yao J, et al. Review: incorporation of organic PCMs into textiles. J Mater Sci. 2022;57:798–847.

    Article  CAS  Google Scholar 

  11. Bukhalkin DD, Semenov AP, Novikov AA, Mendgaziev RI, Stoporev AS, Gushchin PA, et al. Phase change materials in energy: current state of research and potential applications. Chem Technol Fuels Oils. 2020;55:733–41.

    Article  CAS  Google Scholar 

  12. Reddy KS, Mudgal V, Mallick TK. Review of latent heat thermal energy storage for improved material stability and effective load management. J Energy Storage. 2018;15:205–27.

    Article  Google Scholar 

  13. Suresh Kumar KR, Kalaiselvam S. Experimental investigations on the thermophysical properties of CuO-palmitic acid phase change material for heating applications. J Therm Anal Calorim. 2017;129:1647–57.

  14. Gao N, Tang T, Xiang H, Zhang W, Li Y, Yang C, et al. Preparition and structure-properties of crosslinking organic montmorillonite/polyurethane as solid-solid phase change materials for thermal energy storage. SSRN Electron J. 2022;244:1–10.

    Google Scholar 

  15. Rathore PKS, Shukla KS. Improvement in thermal properties of PCM/expanded vermiculite/expanded graphite shape stabilized composite PCM for building energy applications. Renew Energy. 2021;176:295–304.

    Article  CAS  Google Scholar 

  16. Gao L, Sun X, Sun B, Che D, Li S, Liu Z. Preparation and thermal properties of palmitic acid/expanded graphite/carbon fiber composite phase change materials for thermal energy storage. J Therm Anal Calorim. 2020;141:25–35.

    Article  CAS  Google Scholar 

  17. Qu Y, Wang S, Tian Y, Zhou D. Comprehensive evaluation of paraffin-HDPE shape stabilized PCM with hybrid carbon nano-additives. Appl Therm Eng. 2019;163:1–11.

    Article  Google Scholar 

  18. Zhao X, Zou D, Wang S. Flexible phase change materials: preparation, properties and application. Chem Eng J. 2022;431:1–17.

    Article  Google Scholar 

  19. Zou Z, Wu W, Shen W. Introduction of phase change material into sustainable carbon materials for enhanced shape stability and thermal conductivity. ChemistrySelect. 2020;5:8679–86.

    Article  CAS  Google Scholar 

  20. Mahdi JM, Lohrasbi S, Nsofor EC. Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: a review. Int J Heat Mass Transf. 2019;137:630–49.

    Article  CAS  Google Scholar 

  21. Gao L, Fan X, Zhang S, Che D, Sun B. Palmitic acid graphene composite phase change materials: a molecular dynamics simulation. Thermochim Acta. 2022;707:1–8.

    Article  Google Scholar 

  22. NL Narasimhan. Assessment of latent heat thermal storage systems operating with multiple phase change materials. J Energy Storage. 2019;23:442–55.

  23. Jamil N, Kaur J, Pandey AK, Shahabuddin S, Hassani S, Saidur R, et al. A review on nano enhanced phase change materials: an enhancement in thermal properties and specific heat capacity. J Adv Res Fluid Mech Therm Sci. 2019;57:110–20.

    Google Scholar 

  24. Nagar S, Sharma K, Singh M, Kumar P, Pandey AK. Charging analysis and characterizations of COOH group functionalized graphene combined with paraffin wax as phase change material for thermal energy storage applications. J Therm Anal Calorim. 2022;147:11021–38.

    Article  CAS  Google Scholar 

  25. Ahmadi O, Majidi S, Hashemi TP. Comparison of different approaches for thermal performance improvement of a phase change energy storage system. J Therm Anal Calorim. 2020;141:1753–68.

    Article  CAS  Google Scholar 

  26. Cárdenas-Ramírez C, Gómez M, Jaramillo F. Characterization of a porous mineral as a promising support for shape-stabilized phase change materials. J Energy Storage. 2019;26:1–9.

    Article  Google Scholar 

  27. Shi J, Qin M, Aftab W, Zou R. Flexible phase change materials for thermal energy storage. Energy Storage Mater. 2021;41:321–42.

    Article  Google Scholar 

  28. Abdeali G, Bahramian AR, Abdollahi M. Review on nanostructure supporting material strategies in shape-stabilized phase change materials. J Energy Storage. 2020;29:1–31.

    Article  Google Scholar 

  29. Muzhanje AT, Hassan MA, Ookawara S, Hassan H. An overview of the preparation and characteristics of phase change materials with nanomaterials. J Energy Storage. 2022;51:1–22.

    Article  Google Scholar 

  30. Wu MQ, Wu S, Cai YF, Wang RZ, Li TX. Form-stable phase change composites: preparation, performance, and applications for thermal energy conversion, storage and management. Energy Storage Mater. 2021;42:380–417.

    Article  Google Scholar 

  31. Lin Y, Zhu C, Alva G, Fang G. Palmitic acid/polyvinyl butyral/expanded graphite composites as form-stable phase change materials for solar thermal energy storage. Appl Energy. 2018;228:1801–9.

    Article  CAS  Google Scholar 

  32. Gu X, Liu P, Bian L, He H. Enhanced thermal conductivity of palmitic acid/mullite phase change composite with graphite powder for thermal energy storage. Renew Energy. 2019;138:833–41.

    Article  CAS  Google Scholar 

  33. Gu X, Liu P, Liu C, Peng L, He H. A novel form-stable phase change material of palmitic acid-carbonized pepper straw for thermal energy storage. Mater Lett. 2019;248:12–5.

    Article  CAS  Google Scholar 

  34. Ibrahim SF, Asikin-mijan N, Ibrahim ML, Abdulkareem-alsultan G, Izham SM, Taufiq-Ya YH. Sulfonated functionalization of carbon derived corncob residue via hydrothermal synthesis route for esterification of palm fatty acid distillate. Energy Convers Manag. 2020;210:1–12.

  35. Choi HJ. Agricultural bio-waste for adsorptive removal of crude oil in aqueous solution. J Mater Cycles Waste Manag. 2019;21:356–64.

    Article  CAS  Google Scholar 

  36. Nazifa TH, Habba N, Salmiati, Aris A, Hadibarata T. Adsorption of procion red MX-5B and crystal violet dyes from aqueous solution onto corncob activated carbon. J Chin Chem Soc. 2017;65:1–12.

  37. Rahma NA, Kurniasari A, Setyo Pambudi YD, Bintang HM, Zulfia A, Hudaya C. Characteristics of Corncob-Originated Activated Carbon Using Two Different Chemical Agent. In: 3rd MRS-ID meeting 2018. Depok, Indonesia IOP conference series: materials science and engineering. 2019. p. 1–7.

  38. Xie XB, Wu D, Wu H, Hou C, Sun X, Zhang Y, et al. Dielectric parameters of activated carbon derived from rosewood and corncob. J Mater Sci Mater Electron. 2020;31:18077–84.

    Article  Google Scholar 

  39. Zabi NZ, Ibrahim WNW, Hanapi NSM, Hadzir NM. Removal of various contaminants by highly porous activated carbon sorbent derived from agricultural waste produced in Malaysia—a review. Nat Environ Pollut Technol. 2021;20:1173–83.

    CAS  Google Scholar 

  40. Medhat A, El-Maghrabi HH, Abdelghany A, Abdel Menem NM, Raynaud P, Moustafa YM, et al. Efficiently activated carbons from corn cob for methylene blue adsorption. Appl Surf Sci Adv. 2021;3:1–8.

    Article  Google Scholar 

  41. Amran F, Zaini MAA. Effects of chemical activating agents on physical properties of activated carbons—a commentary. Water Pract Technol. 2020;15:854–76.

    Article  Google Scholar 

  42. Bakar NA, Othman N, Yunus ZM, Altowayti WAH, Al-Gheethi A, Asharuddin SM, et al. Nipah (Musa acuminata balbisiana) banana peel as a lignocellulosic precursor for activated carbon: characterization study after carbonization process with phosphoric acid impregnated activated carbon. Biomass Convers Biorefinery. 2021;5:1–8.

    Google Scholar 

  43. Han L, Ma G, Xie S, Sun J, Jia Y, Jing Y. Preparation and characterization of the shape-stabilized phase change material based on sebacic acid and mesoporous MCM-41. J Therm Anal Calorim. 2017;130:935–41.

    Article  CAS  Google Scholar 

  44. Cárdenas-Ramírez C, Gómez MA, Jaramillo F. Comprehensive analysis of the thermal properties of capric-myristic, lauric-myristic and palmitic-stearic acids and their shape-stabilization in an inorganic support. J Energy Storage. 2021;34:1–10.

    Article  Google Scholar 

  45. Sarı A, Bicer A, Al-Sulaiman FA, Karaipekli A, Tyagi VV. Diatomite/CNTs/PEG composite PCMs with shape-stabilized and improved thermal conductivity: preparation and thermal energy storage properties. Energy Build. 2018;164:166–75.

    Article  Google Scholar 

  46. Wan Y, Chen Y, Cui Z, Ding H, Gao S, Han Z, et al. A promising form-stable phase change material prepared using cost effective pinecone biochar as the matrix of palmitic acid for thermal energy storage. Sci Rep. 2019;9:1–10.

    Article  Google Scholar 

  47. Zhang Y, Song X, Zhang P, Gao H, Ou C, Kong X. Production of activated carbons from four wastes via one-step activation and their applications in Pb2+ adsorption: insight of ash content. Chemosphere. 2020;245:1–9.

    Article  Google Scholar 

  48. Wu B, Fu W, Kong B, Hu K, Zhou C, Lei J. Preparation and characterization of stearic acid/polyurethane composites as dual phase change material for thermal energy storage. J Therm Anal Calorim. 2018;132:907–17.

    Article  CAS  Google Scholar 

  49. Qu M, Guo C, Li L. Preparation, characterization and thermal properties of dodecanol, palmitic acid and hydroxylpropyl methyl cellulose as novel form-stable phase change materials. J Therm Anal Calorim. 2022;147:4915–24.

    Article  CAS  Google Scholar 

  50. Wenbing J, Chaoming W, Zhengyu C, Wang T. Preparation and performances of palmitic acid_diatomite form-stable composite phase change materials. Int J Energy Res. 2021. https://doi.org/10.1002/er.5197.

    Article  Google Scholar 

  51. Gu X, Liu P, Bian L, Peng L, Liu Y, He H. Mullite stabilized palmitic acid as phase change materials for thermal energy storage. Minerals. 2018;8:2–10.

    Article  Google Scholar 

  52. Xing J, Zhou Y, Yang K, Chang J, Yu Y, Cai L, et al. Microencapsulation of fatty acid eutectic with polyvinyl chloride shell used for thermal energy storage. J Energy Storage. 2021;34:1–7.

    Article  Google Scholar 

  53. Al-Ghouti MA, Da’ana DA. Guidelines for the use and interpretation of adsorption isotherm models: a review. J Hazard Mater. 2020;393:1–22.

    Article  Google Scholar 

  54. McGlashan ML. Manual of symbols and terminology for physicochemical quantities and units. Pure Appl Chem. 1970;21:1–44.

    Article  CAS  Google Scholar 

  55. Mg V, Rs D. A comprehensive investigation and artificial neural network modeling of shape stabilized composite phase change material for solar thermal energy storage. J Energy Storage. 2022;48:1–17.

    Google Scholar 

  56. Falahatian M. Preparation of paraffin/silica–graphene shape- stabilized composite phase change materials for thermal energy storage. J Mater Sci. 2022;33:12846–56.

    CAS  Google Scholar 

  57. Song X, Cai Y, Wang W, Sun X, Wu Y, Wei Q, et al. Thermal behavior and shape-stabilization of fatty acid eutectics/electrospun carbon nano-felts composite phase change materials enhanced by reduced graphene oxide. Sol Energy Mater Sol Cells. 2019;191:306–15.

    Article  CAS  Google Scholar 

  58. Erdogan FO. Freundlich, langmuir, temkin, dr and harkins-jura isotherm studies on the adsorption of CO2 on various porous adsorbents. Int J Chem React Eng. 2019;17:1–11.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Alim Jafari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, M.A., Attan, N., Tabish, M.S. et al. Preparation and thermal behavior of palmitic acid/activated carbon from corncob as phase change materials for thermal energy storage. J Therm Anal Calorim 148, 9453–9464 (2023). https://doi.org/10.1007/s10973-023-12347-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12347-2

Keywords

Navigation