Skip to main content
Log in

Abstract

A revision on articles concerning thermal analysis of tetracyclines is presented, regarding drug-excipient compatibility, characterization of drug releasing systems, physicochemical behavior of drug-supported systems and degradation of some pharmaceuticals itself. Initially, an overview of information regarding this class of drugs is presented. A bibliographic survey revealed relatively few works on this subject despite the worldwide use and relevance of this class of antibiotics. Here, 37 papers published during the time frame 2000–2022 were classified as above and discussed once they presented thermoanalytical data straightly related to the tetracyclines. From the thermal studies of the drugs, a general decomposition behavior could be identified and it is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from Web of Science

Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TCs:

General abbreviation for tetracyclines

TC:

Tetracycline

TCH:

Tetracycline hydrochloride

OTC:

Oxytetracycline

DOX:

Doxycycline

DOX-SLN:

Doxycycline-loaded solid lips nanoparticles

OTCH:

Oxytetracycline hydrochloride

CTCH:

Chlortetracycline hydrochloride

MNC:

Minocycline

AHTC:

Anhydrotetracycline

Meclo:

Meclocycline

TGA:

Thermogravimetry

DTG:

Derivative thermogravimetry

DTA:

Differential thermal analysis

DSC:

Differential scanning calorimetry

EGA:

Evolved gas analysis

TGA-FTIR:

Thermogravimetry coupled to Fourier transform infrared spectroscopy

AFM:

Atomic force microscopy

DLS:

Dynamic light scattering

FTIR:

Fourier transform infrared spectroscopy

31P-NMR :

Phosphorus-31 nuclear magnetic resonance

1H-NMR :

Hydrogen nuclear magnetic resonance

XRPD:

X-ray powder diffraction

VLI:

Visible light irradiation

Rp:

Propagation rate constant

IP:

Induction period

AIBN:

Azobisisobutyronitrile

BPO:

Benzoyl peroxide

BSA:

Bovine serum albumin

CTAB:

Cetrimonium bromide

HCECs:

Human corneal eukaryotic cells

HPMC:

Hydroxypropyl methylcellulose

k-carrageenan:

Kappa carrageenan

MMA:

Methyl methacrylate

MMW:

Miracle mouthwash

Mt:

Montmorillonite

Pal:

Palygorskite

PCL:

poly(ε-Caprolactone)

PLA-HAP-DOX:

Polylactic acid-hydroxyapatite-doxycycline

PLGA:

poly(D,L-Lactide-co-glycolide)

PLLA:

poly(L-lactic acid)

PLLA-PEG-PLLA:

poly(L,L-Lactide)-b-poly(ethylene glycol)-b-poly(L,L-lactide)

PMMA:

poly(Methyl methacrylate)

PVA-SbQ:

poly(Vinyl alcohol)-stilbazole quaternized

RAL:

Raloxifene HCl

Sep:

Sepiolite

SLST:

Surfactants sodium lauryl sulfate

Veegum© :

Montmorillonite

References

  1. Lindblad WJ. Considerations for determining if a natural product is an effectivewound-healing agent. Int J Low Extrem Wounds. 2008;7:75–81.

    Article  PubMed  Google Scholar 

  2. Forrest RD. Early history of wound treatment. J R Soc Med. 1982;75:198–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wainwright M. Moulds in ancient and more recent medicine. Mycologist. 1989;3:21–3.

    Article  Google Scholar 

  4. https://www.nobelprize.org/prizes/medicine/1908/summary/; accessed in: December 2022

  5. Chambers HF. General considerations of antimicrobial therapy. Goodman & Gilman's The Pharmacological Basis of Therapeutics. LL Brunton; JS Lazo, KL Parker eds., 3rd ed. McGraw Hill:New York; 2006.

  6. Finberg RW, Moellering RC, Tally FP, Craig WA, Pankey GA, Dellinger EP. The importance of bactericidal drugs: future directions in infectious disease. Clin Infect Dis. 2004;39:1314–20.

    Article  CAS  PubMed  Google Scholar 

  7. Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65:232–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN 0–9678550–9–8. https://doi.org/10.1351/goldbook.

  9. O’Neil MJ, Heckelman PE, Dobbelaar PH. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biological. 15th ed. Cambridge - UK: Royal Society of Chemistry; 2013.

    Google Scholar 

  10. Granados-Chinchilla F, Rodriguez C. Tetracyclines in food and feeding stuffs: from regulation to analytical methods, bacterial resistance, and environmental and health implications. J Anal Methods Chem. 2017;2017:1315497.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Deboyser D, Goethals F, Krack G, Roberfroid M. Investigation into the mechanism of tetracycline-induced steatosis: study in isolated hepatocytes. Toxicol Appl Pharmacol. 1989;97:473–9.

    Article  CAS  PubMed  Google Scholar 

  12. Amacher DE, Martin BA. Tetracycline-induced steatosis in primary canine hepatocyte cultures. Fundam Appl Toxicol. 1997;40:256–63.

    Article  CAS  PubMed  Google Scholar 

  13. Ekwall B, Acosta D. In vitro comparative toxicity of selected drugs and chemicals in HeLa cells, Chang liver cells, and rat hepatocytes. Drug Chem Toxicol. 1982;5:219–31.

    Article  CAS  PubMed  Google Scholar 

  14. Archer JS, Archer DF. Oral contraceptive efficacy and antibiotic interaction: a myth debunked. J Am Acad Dermatol. 2022;46:917–23.

    Article  Google Scholar 

  15. Dréno B, Bettoli V, Ochsendorf F, Layton A, Mobacken H, Degreef H. European recommendations on the use of oral antibiotics for acne. J Eur Acad Dermatol. 2004;14(6):391–9.

    Google Scholar 

  16. DeRossi SS, Hersh EV. Antibiotics and oral contraceptives. J Eur Acad Dermatol. 2002;46:653–64.

    Google Scholar 

  17. Mother to Baby | Fact Sheets [Internet]. Brentwood (TN): Organization of Teratology Information Specialists (OTIS); 1994. Tetracycline. 2022 Feb. PMID: 35952247.

  18. Clarindo JES, Viana RB, Cervini P, Silva ABF, Cavalheiro ETG. Determination of tetracycline using a graphite-polyurethane composite electrode modified with a molecularly imprinted polymer. Anal Lett. 2020;53:1932–55.

    Article  CAS  Google Scholar 

  19. Calixto CMF, Cavalheiro ETG. Determination of tetracycline in bovine and breast milk using a graphite-polyurethane composite electrode. Anal Lett. 2017;50:2323–34.

    Article  CAS  Google Scholar 

  20. Calixto CMF, Cervini P, Cavalheiro ETG. Determination of tetracycline in environmental water samples at a graphite-polyurethane composite electrode. J Braz Chem Soc. 2012;23:938–43.

    Article  CAS  Google Scholar 

  21. Bassett EJ, Keith MS, Armelagos GJ, Martin DL, Villanueva AR. Tetracycline-labeled bone from ancient Sudanese Nubia (A.D. 350). Science. 1980;9:1532–4.

    Article  Google Scholar 

  22. Samuel D. Archaeology of ancient Egypt beer. J Am Soc Brew Chem. 1996;54:3–12.

    CAS  Google Scholar 

  23. Nelson ML, Dinardo A, Hochberg J, Armelagos GJ. Mass spectroscopic characterization of tetracycline in the skeletal remains of an ancient population from Sudanese Nubia 350–550 CE. Am J Phys Anthropol. 2010;143:151–4.

    Article  PubMed  Google Scholar 

  24. Borgui AA, Palma MSA. Tetracycline: production, waste treatment and environmental impact assessment. Braz J Pharm Sci. 2014;50:25–40.

    Article  Google Scholar 

  25. Craig DQM. Thermal Analysis of Pharmaceuticals. 1st ed. Boca Raton: CRC Press; 2006.

    Book  Google Scholar 

  26. Saunders M. Thermal analysis of pharmaceuticals. In thermal analysis principles and applications. 1st ed. Oxford: Blackwell Pub, Ames, Iowa, 2008.

  27. Giron D. Applications of thermal analysis and coupled techniques in pharmaceuticalindustry. J Therm Anal Calorim. 2002;68:335–57.

    Article  CAS  Google Scholar 

  28. https://www.webofscience.com/wos/woscc/basic-search; accessed in: May 2022

  29. Bueno MS, Miñambres GG, Bongioannia A, Chattah AK, Aiassa V, Longhia MR, Garnero C. Exploring solid forms of oxytetracycline hydrochloride. Int J Pharm. 2020;585: 119496.

    Article  CAS  PubMed  Google Scholar 

  30. Tekade R. Dosage form design parameters. 1st ed. Cambridge: Academic Press; 2018.

    Google Scholar 

  31. Narkhede R, Athawale R, Patil N, Baburaj M. Formulation, evaluation, and clinical assessment of novel solid lipid microparticles of tetracycline hydrochloride for the treatment of periodontitis. AAPS Pharm Sci Tech. 2021;22:162–72.

    Article  CAS  Google Scholar 

  32. Narkhede RG, Athawale RB. Screening of Selective C16 to C18 Lipids and process optimization based on design of experiments in formulating solid lipid microparticles by twin screw hot melt dispersion process. J Pharm Innov. 2021;17:940–54.

    Article  Google Scholar 

  33. Patlolla VGR, Popovic N, Peter Holbrook W, Kristmundsdottir T, Gizurarson S. Effect of doxycycline microencapsulation on buccal films: stability. Mucoadhesion and in vitro drug release. Gels. 2021;7:51–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Younis US, Fazel M, Myrdal PB. Characterization of tetracycline hydrochloride compounded in a miracle mouthwash formulation. AAPS Pharm Sci Tech. 2019;20:178–85.

    Article  Google Scholar 

  35. Johnson ML, Uhrich KE. Concurrent release of admixed antimicrobials and salicylic acid from salicylate-based poly(anhydride-esters). J Biomed Mater Res A. 2009;91A:671–8.

    Article  CAS  Google Scholar 

  36. Meretoudi A, Banti CN, Siafarika P, Kalampounias AG, Hadjikakou SK. Tetracycline water soluble formulations with enhanced antimicrobial activity. Antibiotics. 2020;9:845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pathak M, Coombes AGA, Turner MS, Palmer C, Wang D, Steadman KJ. Investigation of polycaprolactone matrices for intravaginal delivery of doxycycline. J Pharm Sci. 2015;104:4217–22.

    Article  CAS  PubMed  Google Scholar 

  38. Misra R, Acharya S, Dilnawaz F, Sahoo SK. Sustained antibacterial activity of doxycycline-loaded poly(D, L-lactide-co-glycolide) and poly(ε-caprolactone) nanoparticles. Nanomedicine. 2009;4:519–30.

    Article  CAS  PubMed  Google Scholar 

  39. Turan CU, Metin A, Guvenilir Y. Controlled release of tetracycline hydrochloride from poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin nanofibers. Eur J Pharm Biopharm. 2021;162:59–69.

    Article  Google Scholar 

  40. Cui J, Wang Q-Q, Qiu Y-Y, Wei Q-F. Electrospun poly(vinyl alcohol)-stilbazole quaternized/zein-tetracycline hydrochloride core-sheath nanofibers for drug release. J Nanosci Nanotechnol. 2016;16:9497–504.

    Article  CAS  Google Scholar 

  41. Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech. 2010;21:167–93.

    PubMed  PubMed Central  Google Scholar 

  42. Keswani N, Choudhary S, Kishore N. Quantitative aspects of recognition of the antibiotic drug oxytetracycline by bovine serum albumin: calorimetric and spectroscopic studies. J Chem Thermodyn. 2013;58:196–205.

    Article  CAS  Google Scholar 

  43. Burgos MI, Fernández RA, Celej MS, Rossi LI, Fidelio GD, Dassie SA. Binding of the highly toxic tetracycline derivative, anhydrotetracycline, to bovine serum albumin. Biol Pharm Bull. 2011;34:1301–6.

    Article  CAS  PubMed  Google Scholar 

  44. Malekar SA, Sarode AL, Bach AC, Bose A, Bothun G, Worthen DR. Radio frequency-activated nanoliposomes for controlled combination drug delivery. AAPS Pharm Sci Technol. 2015;16:1335–43.

    Article  CAS  Google Scholar 

  45. Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv. 2010;7:429–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Langer R. New methods of drug delivery. Science. 1990;249:1527–33.

    Article  CAS  PubMed  Google Scholar 

  47. Goh CF, Lane ME. Advanced structural characterisation of pharmaceuticals using nano-thermal analysis (nano-TA). Adv Adv Drug Deliv Rev. 2022;180: 114077.

    Article  CAS  PubMed  Google Scholar 

  48. Li C-Y, Qiu Y, Song D-D. Application of thermal analysis in new drug delivery systems and products. Chinese J New Drugs. 2015;24:654–8.

    CAS  Google Scholar 

  49. Agostinho DAS, Paninho AI, Cordeiro T, Nunes AVM, Fonseca IM, Pereira C. Properties of κ-carrageenan aerogels prepared by using different dissolution media and its application as drug delivery systems. Mater Chem Phys. 2020;253: 123290.

    Article  CAS  Google Scholar 

  50. Kirchberg M, Eick S, Buchholz M, Rosche F, Kiesow A, Sarembe S. Controlled release minocycline-lipid-complex extrudates for the therapy of periodontitis with enhanced flexibility. Int J Pharm. 2020;586: 119578.

    Article  CAS  PubMed  Google Scholar 

  51. Prasad LTS, Madhusudhan B, Kodihalli BP, Ghosh PC. Development and in vitro evaluation of oxytetracycline loaded PMMA nanoparticles for oral delivery against anaplasmosis. IET Nanobiotechnol. 2017;11:119–26.

    Article  Google Scholar 

  52. Adi H, Young PM, Chan H-K, Stewart P, Agus H, Traini D. Cospray dried antibiotics for dry powder lung delivery. J Pharm Sci. 2008;97:3356–66.

    Article  CAS  PubMed  Google Scholar 

  53. Honary S, Zahir F. Effect of process factors on the properties of doxycycline nanovesicles. Trop J Pharm Res. 2012;11:169–75.

    Article  CAS  Google Scholar 

  54. Marques MS, Zepon KM, Petronilho FC, Soldi V, Kanis LA. Characterization of membranes based on cellulose acetate butyrate/poly(caprolactone)triol/doxycycline and their potential for guided bone regeneration application. Mater Sci Eng C. 2017;76:365–73.

    Article  CAS  Google Scholar 

  55. Hosseini SM, Abbasalipourkabir R, Jalilian FA, Asl SS, Farmany A, Roshanaei G. Doxycycline-encapsulated solid lipid nanoparticles as promising tool against brucella melitensis enclosed in macrophage: a pharmacodynamics study on J774A1 cell line. Antimicrob Resist Infect Control. 2019;862:1–12.

    Google Scholar 

  56. He C, Huang Z, Han X, Liu L, Zhang H, Chen L. Coaxial Electrospun poly(L-lactic acid) ultrafine fibers for sustained drug delivery. J Macromol Sci B. 2006;45:515–24.

    Article  CAS  Google Scholar 

  57. Farkas N-I, Marincaș L, Barabás R, Bizo L, Ilea A, Turdean GL. Preparation and characterization of doxycycline-loaded electrospun PLA/HAP nanofibers as a drug delivery system. Materials. 2022;15:1–16.

    Article  Google Scholar 

  58. Mundargi RC, Srirangarajan S, Agnihotri SA, Patil SA, Ravindra S, Setty SB. Development and evaluation of novel biodegradable microspheres based on poly(d, l-lactide-co-glycolide) and poly(ε-caprolactone) for controlled delivery of doxycycline in the treatment of human periodontal pocket: in vitro and in vivo studies. J Control Release. 2007;119:59–68.

    Article  CAS  PubMed  Google Scholar 

  59. Patel RS, Cho DY, Tian C, Chang A, Estrellas KM, Lavin D. Doxycycline delivery from PLGA microspheres prepared by a modified solvent removal method. J Microencapsul. 2012;29:344–52.

    Article  CAS  PubMed  Google Scholar 

  60. He C-L, Huang Z-M, Han X-J. Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications. J Biomed Mater Res A. 2009;89A:80–95.

    Article  CAS  Google Scholar 

  61. Ghadiri M, Hau H, Chrzanowski W, Agus H, Rohanizadeh R. Laponite clay as a carrier for in situ delivery of tetracycline. RSC Adv. 2013;3:20193.

    Article  CAS  Google Scholar 

  62. Andrade ÂL, Militani IA, de Almeida KJ, Belchior JC, dos Reis SC, Costa e Silva RMF. Theoretical and experimental studies of the controlled release of tetracycline incorporated into bioactive glasses. AAPS Pharm Sci Tech. 2018;19:1287–96.

    Article  CAS  Google Scholar 

  63. Merchan M, Sedlarikova J, Friedrich M, Sedlarik V, Saha P. Thermoplastic modification of medical grade polyvinyl chloride with various antibiotics: effect of antibiotic chemical structure on mechanical, antibacterial properties, and release activity. Polym Bull. 2011;67:997–1016.

    Article  CAS  Google Scholar 

  64. Liebenberg W, de Villiers MM, Wurster DE, Swanepoel E, Dekker TG, Lötter AP. The effect of polymorphism on powder compaction and dissolution properties of chemically equivalent oxytetracycline hydrochloride powders. Drug Dev Ind Pharm. 1999;25:1027–33.

    Article  CAS  PubMed  Google Scholar 

  65. Lu H, Qiu Y, Wang Q, Li G, Wei Q. Nanocomposites prepared by electrohydrodynamics and their drug release properties. Mater Sci Eng C. 2018;91:26–35.

    Article  CAS  Google Scholar 

  66. Mothé CG, Azevedo AD, Drumond WS, Wang SH, Sinisterra RD. Preparation and characterization of poly(l, l-lactide)-b-poly(ethylene glycol)-b-poly(l, l-lactide) (PLLA-PEG-PLLA) microspheres having encapsulated tetracycline. J Therm Anal Calorim. 2011;106:671–7.

    Article  Google Scholar 

  67. Rocha MC, Braz EMA, Honório LMC, Trigueiro P, Fonseca MG, Silva-Filho EC. Understanding the effect of UV light in systems containing clay minerals and tetracycline. Appl Clay Sci. 2019;183: 105311.

    Article  Google Scholar 

  68. Yildiz US. Differential scanning calorimetry as a tool to detect antibiotic residues in ultra high temperature whole milk. Int J Food Sci Technol. 2009;44:2577–82.

    Article  CAS  Google Scholar 

  69. Murakami Y, Kawata A, Suzuki S, Fujisawa S. Radical-scavenging and pro-/anti-inflammatory activity of tetracycline and related phenolic compounds with or without visible light irradiation. In vivo. 2020;34:81–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dev RK, Mishra P, Kumar Chaudhary N, Bhattarai A. Synthesis, characterization, and antibacterial evaluation of heteroleptic oxytetracycline-salicylaldehyde complexes. J Chem. 2020;2020:1–10.

    Article  Google Scholar 

  71. Nicolet-ThermoScientifc Co. Nicolet EPA Vapor Phase data-base. Omnic 8.0 software. Madison: ThermoScientifc.

  72. Cervini P, Machado LCM, Ferreira APG, Ambrozini B, Cavalheiro ÉTG. Thermal decomposition of tetracycline and chlortetracycline. J Anal Appl Pyrolysis. 2016;118:317–24.

    Article  CAS  Google Scholar 

  73. Cervini P, Ambrozini B, Machado LCM, Ferreira APG, Cavalheiro ÉTG. Thermal behavior and decomposition of oxytetracycline hydrochloride. J Therm Anal Calorim. 2015;121:347–52.

    Article  CAS  Google Scholar 

  74. Freitas J, Ferreira APG, Cavalheiro ÉTG. Investigating the thermal behavior of doxycycline and meclocycline. J Therm Anal Calorim. 2022;147:13413–23.

    Article  Google Scholar 

Download references

Funding

Fundação de Amparo à Pesquisa do Estado de São Paulo,2019/22217-8,Eder Cavalheiro,Coordenação de Aperfeiçoamento de Pessoal de Nível Superior,Conselho Nacional de Desenvolvimento Científico e Tecnológico

Author information

Authors and Affiliations

Authors

Contributions

JdF involved in bibliographic revision, article selection, writing and revision and editing; APGF involved in bibliographic revision, article selection, writing and revision and editing; ÉTGC involved in conceptualization, article selection, revision and editing, project administration and funding acquisition.

Corresponding author

Correspondence to Éder Tadeu Gomes Cavalheiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas, J., Ferreira, A.P.G. & Cavalheiro, É.T.G. Thermal analysis of tetracyclines: a review. J Therm Anal Calorim (2023). https://doi.org/10.1007/s10973-023-12308-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-023-12308-9

Keywords

Navigation