Skip to main content

Advertisement

Log in

Stability evaluation and kinetic study for the atypical antidepressant opipramol

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Opipramol is an active pharmaceutical ingredient used as an antidepressant and anxiolytic, being formulated as a dihydrochloride salt, usually in tablets and drops. The aim of the present study was represented by the thermal stability and kinetic evaluation of opipramol dihydrochloride (OPI 2HCl) performed in an oxidative atmosphere on the 30–450 °C temperature range using multiple heating rates (β = 2.5, 5, 7, 10 and 12 °C min−1). Thermogravimetric and derivative thermogravimetric analysis proved the stability of OPI 2HCl up until 150 °C followed by a single mass loss of approximately 80% up until 350 °C. A multi-process degradation was suggested by the differential scanning calorimetry evaluation and later confirmed by the use of the kinetic methods. The results were assessed using the preliminary ASTM E698 method, by means of which an apparent activation energy (Ea) value of 112.1 kJ min−1 was calculated. The implementation of the isoconversional Friedman differential method and Flynn–Wall–Ozawa integral method revealed a dependence of the Ea value to the conversion degree and an indication of a multistage decomposition responsible for the thermal degradation of the drug. As such, the nonparametric kinetics method was applied and a three-process degradation was revealed, all processes being determined by both physical transformations and chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schindler W, Blattner H. Über derivate des iminodibenzyls iminostilben-derivate. Helv Chim Acta. 1961;44(3):753–62. https://doi.org/10.1002/hlca.19610440319.

    Article  CAS  Google Scholar 

  2. Grosser HH, Ryan E. Drug treatment of anxiety: a controlled study of opipramol and chlordiazepoxide. Br J Psych. 1965;111(471):134–41. https://doi.org/10.1192/bjp.111.471.134.

    Article  CAS  Google Scholar 

  3. Gahr M, Hiemke C, Connemann B. Update opipramol. Fortschr Neurol Psychiatr. 2017;85(03):139–45. https://doi.org/10.1055/s-0043-100762.

    Article  PubMed  Google Scholar 

  4. Mohapatra S, Rath N, Agrawal A, Verma J. Opipramol: a novel drug. Delhi Psychiatry J. 2013;16(2):409–11.

    Google Scholar 

  5. Wieckiewicz M, Martynowicz H, Wieczorek T, Wojakowska A, Sluzalec-Wieckiewicz K, Gac P, et al. Consecutive controlled case series on effectiveness of opipramol in severe sleep bruxism management—preliminary study on new therapeutic path. Brain Sci. 2021;11(2):146. https://doi.org/10.3390/brainsci11020146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bareli T, Ahdoot HL, Ben-Moshe H, Barnea R, Warhaftig G, Maayan R, et al. Chronic opipramol treatment extinguishes cocaine craving through Rac1 in responders: a rat model study. Addict Biol. 2021;26(5):1–12. https://doi.org/10.1111/adb.13014.

    Article  CAS  Google Scholar 

  7. Bareli T, Ahdoot HL, Ben Moshe H, Barnea R, Warhaftig G, Gispan I, et al. Novel opipramol-baclofen combination alleviates depression and craving and facilitates recovery from substance use disorder—an animal model and a human study. Front Behav Neurosci. 2021;15:788708. https://doi.org/10.3389/fnbeh.2021.788708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kirkham JE, Kinross-Wright J. A Clinical evaluation of opipramol (ensidon) in the treatment of anxious depression. Psychosomatics. 1962;3(6):464–6. https://doi.org/10.1016/S0033-3182(62)72631-9.

    Article  PubMed  Google Scholar 

  9. Fun H-K, Loh W-S, Siddegowda MS, Yathirajan HS, Narayana B. Opipramol. Acta Crystallogr Sect E Struct Rep Online. 2011;67(7):o1598–o1598. https://doi.org/10.1107/S1600536811021131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krysta K, Murawiec S, Warchala A, Zawada K, Cubała WJ, Wiglusz MS, et al. Modern indications for the use of opipramol. Psychiatr Danub. 2015;27(Suppl 1):S435–7.

    PubMed  Google Scholar 

  11. Carpéné C, Les F, Mercader J, Gomez-Zorita S, Grolleau J-L, Boulet N, et al. Opipramol inhibits lipolysis in human adipocytes without altering glucose uptake and differently from antipsychotic and antidepressant drugs with adverse effects on body weight control. Pharmaceuticals. 2020;13(3):41. https://doi.org/10.3390/ph13030041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kryger M, Roth T, Dement WC. Principles and practice of sleep medicine, 6th ed. Elsevier; 2017. https://doi.org/10.1016/C2012-0-03543-0.

  13. Betz R, Gerber T, Hosten E, Siddaraju BP, Yathirajan HS. Opipramol dihydrochloride. Acta Crystallogr Sect E Struct Rep Online. 2011;67(11):o2994–5. https://doi.org/10.1107/S1600536811042280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Opipramol dihydrochloride CAS 909–39–7 https://www.chemicalbook.com/ProductChemicalPropertiesCB8504069_EN.htm. Accessed 8 Dec 2022.

  15. Circioban D, Ledeti A, Vlase G, Vlase T, Dehelean C, Ledeti I. Thermal stability and kinetic degradation study for dihydroartemisinin. J Therm Anal Calorim. 2020;142(5):2131–9. https://doi.org/10.1007/s10973-020-09902-6.

    Article  CAS  Google Scholar 

  16. Ledeti A, Vlase G, Ledeti I, Vlase T, Matusz P, Dehelean C, et al. Thermal stability of desipramine and imipramine. Rev Chim. 2016;67(2):336–8.

    CAS  Google Scholar 

  17. Vora A, Riga A, Dollimore D, Alexander K. Thermal stability of folic acid in the solid-state. J Therm Anal Calorim. 2004;75(3):709–17. https://doi.org/10.1023/B:JTAN.0000027167.14746.28.

    Article  CAS  Google Scholar 

  18. Siddiqui MR, AlOthman ZA, Rahman N. Analytical techniques in pharmaceutical analysis: a review. Arab J Chem. 2017;10:S1409–21. https://doi.org/10.1016/j.arabjc.2013.04.016.

    Article  CAS  Google Scholar 

  19. Circioban D, Ledeţi I, Vlase G, Ledeţi A, Axente C, Vlase T, et al. Kinetics of heterogeneous-induced degradation for artesunate and artemether. J Therm Anal Calorim. 2018;134(1):749–56. https://doi.org/10.1007/s10973-018-7257-0.

    Article  CAS  Google Scholar 

  20. Jelić D, Papović S, Vraneš M, Gadžurić S, Berto S, Alladio E, et al. Thermo-analytical and compatibility study with mechanistic explanation of degradation kinetics of ambroxol hydrochloride tablets under non-isothermal conditions. Pharmaceutics. 2021;13(11):1910. https://doi.org/10.3390/pharmaceutics13111910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Florence AT, Attwood D. Physicochemical principles of pharmacy. 6th ed. London: Pharmaceutical Press; 2005.

    Google Scholar 

  22. Huynh-Ba K. Handbook of stability testing in pharmaceutical development [Internet]. Huynh-Ba K (eds) Handbook of stability testing in pharmaceutical development: regulations, methodologies, and best practices. New York: Springer;2009. https://doi.org/10.1007/978-0-387-85627-8.

  23. Cafiero L, Castoldi E, Tuffi R, Vecchio CS. Identification and characterization of plastics from small appliances and kinetic analysis of their thermally activated pyrolysis. Polym Degrad Stab. 2014;109:307–18. https://doi.org/10.1016/j.polymdegradstab.2014.08.001.

    Article  CAS  Google Scholar 

  24. Rodante F, Vecchio S, Catalani G, Guidotti M. Thermal analysis and non-isothermal kinetic study of some pesticides: Part II Chlorinate derivatives. J Therm Anal Calorim. 2000;60:605–22. https://doi.org/10.1023/A:1010159424733.

    Article  CAS  Google Scholar 

  25. Vecchio S, Rodante F, Tomassetti M. Thermal stability of disodium and calcium phosphomycin and the effects of the excipients evaluated by thermal analysis. J Pharm Biomed Anal. 2001;24(5–6):1111–23. https://doi.org/10.1016/S0731-7085(00)00568-9.

    Article  CAS  PubMed  Google Scholar 

  26. Lever T, Haines P, Rouquerol J, Charsley EL, van Eckeren P, Burlett DJ. ICTAC nomenclature of thermal analysis (IUPAC Recommendations 2014). Pure Appl Chem. 2014;86(4):545–53. https://doi.org/10.1515/pac-2012-0609.

    Article  CAS  Google Scholar 

  27. Dickinson CF, Heal GR. A review of the ICTAC Kinetics Project, 2000. Thermochim Acta. 2009;494(1–2):1–14. https://doi.org/10.1016/j.tca.2009.05.003.

    Article  CAS  Google Scholar 

  28. Dickinson CF, Heal GR. A review of the ICTAC kinetics project, 2000. Part 2. Non-isothermal results. Thermochim Acta. 2009;494(1–2):15–25. https://doi.org/10.1016/j.tca.2009.05.009.

    Article  CAS  Google Scholar 

  29. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19. https://doi.org/10.1016/j.tca.2011.03.034.

    Article  CAS  Google Scholar 

  30. Mary YS, Panicker CY, Kavitha CN, Yathirajan HS, Siddegowda MS, Cruz SMA, et al. Spectroscopic investigation (FT-IR, FT-Raman and SERS), vibrational assignments, HOMO–LUMO analysis and molecular docking study of opipramol. Spectrochim Acta A Mol Biomol Spectrosc. 2015;137:547–59. https://doi.org/10.1016/j.saa.2014.08.106.

    Article  CAS  PubMed  Google Scholar 

  31. Stuart BH. Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons, Ltd, New York; 2004. https://doi.org/10.1002/0470011149.

  32. Smith BC. Fundamentals of fourier transform infrared spectroscopy. 2nd ed. Boca Raton, Florida: CRC Press Taylor&Francis Group; 2011. https://doi.org/10.1201/b10777.

  33. Coates J. Interpretation of Infrared Spectra, a practical approach. encyclopedia of analytical chemistry. Chichester: John Wiley & Sons, Ltd; 2006. https://doi.org/10.1002/9780470027318.a5606.

  34. Roeges NPG. A guide to the complete interpretation of infrared spectra of organic structures. Chichester: John Wiley & Sons Inc; 1994.

    Google Scholar 

  35. Silva da MAS, Pinheiro de SO, Francisco dos TS, Silva da FON, Batista AA, Ellena J et al., A novel and simple synthetic route for a piperazine derivative. J Braz Chem Soc. 2010;21(9):1754–9. https://doi.org/10.1590/S0103-50532010000900023.

  36. Spell HL. Determination of piperazine rings in ethyleneamines, poly(ethyleneamine), and polyethylenimine by infrared spectrometry. Anal Chem. 1969;41(7):902–5. https://doi.org/10.1021/ac60276a032.

    Article  CAS  Google Scholar 

  37. Ledeti A, Vlase G, Vlase T, Circioban D, Dehelean C, Ledeti I. Kinetic study for solid-state degradation of mental disorder therapeutic agents. J Therm Anal Calorim. 2018;131(1):155–65. https://doi.org/10.1007/s10973-016-6064-8.

    Article  CAS  Google Scholar 

  38. Ledeti A, Olariu T, Caunii A, Vlase G, Circioban D, Baul B, et al. Evaluation of thermal stability and kinetic of degradation for levodopa in non-isothermal conditions. J Therm Anal Calorim. 2018;131(2):1881–8. https://doi.org/10.1007/s10973-017-6671-z.

    Article  CAS  Google Scholar 

  39. ASTM International. Designation: E698−16. Standard Test Method for Kinetic Parameters for Thermally Unstable Materials Using Differential Scanning Calorimetry and the Flynn/Wall/Ozawa Method. 2016. https://doi.org/10.1520/E0698-16

  40. Buda V, Andor M, Ledeti A, Ledeti I, Vlase G, Vlase T, et al. Comparative solid-state stability of perindopril active substance vs. Pharm Formulation Int J Mol Sci. 2017;18(1):164. https://doi.org/10.3390/ijms18010164.

    Article  CAS  Google Scholar 

  41. Simu S, Ledeţi A, Moacă E-A, Păcurariu C, Dehelean C, Navolan D, et al. Thermal degradation process of ethinylestradiol-kinetic study. Processes. 2022;10(8):1518. https://doi.org/10.3390/pr10081518.

    Article  CAS  Google Scholar 

  42. Venkatesh M, Ravi P, Tewari SP. Isoconversional kinetic analysis of decomposition of nitroimidazoles: friedman method vs flynn–Wall–Ozawa method. J Phys Chem A. 2013;117(40):10162–9. https://doi.org/10.1021/jp407526r.

    Article  CAS  PubMed  Google Scholar 

  43. Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci B. 1969;7(1):41–6. https://doi.org/10.1002/pol.1969.110070109.

    Article  CAS  Google Scholar 

  44. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B. 1966;4(5):323–8. https://doi.org/10.1002/pol.1966.110040504.

    Article  CAS  Google Scholar 

  45. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6. https://doi.org/10.1246/bcsj.38.1881.

    Article  CAS  Google Scholar 

  46. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2(3):301–24. https://doi.org/10.1007/BF01911411.

    Article  CAS  Google Scholar 

  47. Fulias A, Vlase G, Grigorie C, Ledeţi I, Albu P, Bilanin M, et al. Thermal behaviour studies of procaine and benzocaine. Part 1. Kinetic analysis of the active substances under non-isothermal conditions. J Therm Anal Calorim. 2013;113(1):265–71. https://doi.org/10.1007/s10973-013-2959-9.

  48. Serra R, Sempere J, Nomen R. A new method for the kinetic study of thermoanalytical data: The non-parametric kinetics model. Thermochim Acta. 1998;316(1):37–45. https://doi.org/10.1016/S0040-6031(98)00295-0.

    Article  CAS  Google Scholar 

  49. Serra R, Nomen R, Sempere J. The non-parametric kinetics. A new method for the kinetic study of thermoanalytical data. J Therm Anal Calorim. 1998;52:933–43. https://doi.org/10.1023/A:1010120203389.

  50. Sempere J, Nomen R, Serra R. Progress in non-parametric kinetics. J Therm Anal Calorim. 1999;56(2):843–9. https://doi.org/10.1023/A:1010178827890.

    Article  CAS  Google Scholar 

  51. Sempere J, Nomen R, Serra R, Soravilla J. The NPK method: an innovative approach for kinetic analysis of data from thermal analysis and calorimetry. Thermochim Acta. 2002;388(1–2):407–14. https://doi.org/10.1016/S0040-6031(02)00037-0.

    Article  CAS  Google Scholar 

  52. Vlase T, Vlase G, Doca N, Bolcu C. Processing of non-isothermal TG data - Comparative kinetic analysis with NPK method. J Therm Anal Calorim. 2005;80(1):59–64. https://doi.org/10.1007/s10973-005-0613-x.

    Article  CAS  Google Scholar 

  53. Vlase T, Vlase G, Birta N, Doca N. Comparative results of kinetic data obtained with different methods for complex decomposition steps. J Therm Anal Calorim. 2007;88(3):631–5. https://doi.org/10.1007/s10973-006-8019-y.

    Article  CAS  Google Scholar 

  54. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3(1):1–12. https://doi.org/10.1016/0040-6031(71)85051-7.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded and completely supported by the infrastructure of West University of Timisoara, postdoctoral advanced research Grant no. 3869/0-1/26.01.2022 (The modulation and optimization of the physicochemical and biopharmaceutical profile of some atypical antidepressants).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed by DC, AL and GV; Data curation was contributed by DC, GR and GV; Formal analysis was contributed by DC, IL and TV; Funding acquisition was contributed by DC; Methodology was contributed by IL, TV and AL; Project administration was contributed by DC; Resources were contributed by DC and GV; Software was contributed by TV and AL; Validation was contributed by GV; Writing was contributed by DC, IL and AL. The agreement between the authors assumes that all authors have equal rights.

Corresponding author

Correspondence to Adriana Ledeţi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Circioban, D., Ledeţi, I., Vlase, T. et al. Stability evaluation and kinetic study for the atypical antidepressant opipramol. J Therm Anal Calorim 148, 13121–13131 (2023). https://doi.org/10.1007/s10973-023-12249-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12249-3

Keywords

Navigation