Skip to main content
Log in

Investigation of the thermal degradation kinetics of ceramifiable silicone rubber-based composite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A kind of ceramifiable rubber-based composite with high-temperature resistance and flame retardancy was prepared by adding silicate glass frits (SGFs) and ammonium polyphosphate (APP) to silicone rubber matrix. The ceramifiable performance was further improved by enhancing thermal stability of the composite through incorporating organo-modified montmorillonite (OMMT). The high-temperature resistance and ceramifiable performance of the ceramifiable silicone rubber-based composite under various pyrolysis conditions were tested. For the fired specimen of silicone rubber/SGF/APP/OMMT, its flexural strength decreased from 4.80 to 3.23 MPa as the heating rate increased from 5 to 20 K min–1, which means that lower heating rate is more favorable to form a compact and dense ceramic body. The influence of thermal stability on the ceramization effects of the ceramifiable silicone rubber-based composite was quantitatively analyzed from the perspective of thermal degradation kinetics based on the Kissinger, Kissinger--Akahira--Sunose, and Flynn--Wall--Ozawa methods. The results show that the pyrolysis activation energy Ea of the composite has a certain relationship with the ceramifiable performance. The better the thermal stability of the composite is, the higher the Ea is and the better the ceramifiable performance is. The Ea increased with the process of ceramization reaction of the composite. The reliability of the regular relation between combustion intensity of material itself, external ablation conditions, and ceramization effect was also verified through cone calorimetry and scanning electron microscope analysis. These results are helpful in preparing ceramifiable polymer composite, which possesses high-temperature resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li YM, Deng C, Wang YZ. A novel high-temperature-resistant polymeric material for cables and insulated wires via the ceramization of mica-based ceramifiable EVA composites. Compos Sci Technol. 2016;132:116–22. https://doi.org/10.1016/j.compscitech.2016.07.007.

    Article  CAS  Google Scholar 

  2. Zhang JQ, Huang YB, Luo S, et al. Study on pyrolysis characteristics and kinetics of organic freproof plugging material by shufed complex evolution. J Therm Anal Calorim. 2022;147:13459–67. https://doi.org/10.1007/s10973-022-11555-6.

    Article  CAS  Google Scholar 

  3. Bourbigot S, Duquesne S. Fire retardant polymers: recent developments and opportunities. J Mater Chem. 2007;17:2283–300. https://doi.org/10.1039/B702511D.

    Article  CAS  Google Scholar 

  4. Polanskýa R, Polanská M. Testing of the fire-proof functionality of cable insulation underfire conditions via insulation resistance measurements. Eng Fail Anal. 2015;57:334–9. https://doi.org/10.1016/j.engfailanal.2015.08.001.

    Article  Google Scholar 

  5. Cross MS, Cusack PA, Hornsby PR. Effects of tin additives on the flammability and smoke emission characteristics of halogen-free ethylene-vinyl acetate copolymer. Polym Degrad Stab. 2003;79:309–18. https://doi.org/10.1016/S0141-3910(02)00294-X.

    Article  CAS  Google Scholar 

  6. Zhao D, Liu W, Shen YC, Wang TW. A novel ceramifiable epoxy composite with enhanced fire resistance and flame retardance. J Therm Anal Calorim. 2022;147:181–93. https://doi.org/10.1007/s10973-020-10200-4.

    Article  CAS  Google Scholar 

  7. Zhang Y, He JH, Yang RJ. The effects of phosphorus-based flame retardants and octaphenyl polyhedral oligomeric silsesquioxane on the ablative and flame-retardation properties of room temperature vulcanized silicone rubberinsulating composites. Polym Degrad Stab. 2016;125:140–7. https://doi.org/10.1016/j.polymdegradstab.2015.12.007.

    Article  CAS  Google Scholar 

  8. Liu L, Hu J, Zhuo JL, et al. Synergistic flame retardant effects between hollow glass microspheres and magnesium hydroxide in ethylene-vinyl acetate composites. Polym Degrad Stab. 2014;104:87–94. https://doi.org/10.1016/j.polymdegradstab.2014.03.019.

    Article  CAS  Google Scholar 

  9. Hanu LG, Simon GP, Mansouri J, et al. Development of polymer-ceramic composites for improved fire resistance. J Mater Process Tech. 2004;153–154:401–7. https://doi.org/10.1016/j.jmatprotec.2004.04.104.

    Article  CAS  Google Scholar 

  10. Mmansouri J, Burford RP, Cheng YB, Hanu L. Formation of strong ceramified ash from silicone-based compositions. J Mater Sci. 2005;40:5741–9. https://doi.org/10.1007/s10853-005-1427-8.

    Article  CAS  Google Scholar 

  11. Hong WD, Deng C, Li RM, et al. A novel EVA composite with simultaneous flame retardation and ceramifiable capacity. Rsc Adv. 2015;5:51248–57. https://doi.org/10.1007/s10853-005-1427-8.

    Article  CAS  Google Scholar 

  12. Lou FP, Yan W, Guo WH, et al. Preparation and properties of ceramifiable flame-retarded silicone rubber composites. J Therm Anal Calorim. 2017;130:813–21. https://doi.org/10.1007/s10973-017-6448-4.

    Article  CAS  Google Scholar 

  13. Xian SM, Xia C, Shan FS, et al. Fluxing agents on ceramification of composites of Mg O-Al2O3-Si O2/boron phenolic resin. J Wuhan Univ Tech Mater Sci. 2018;33:381–9. https://doi.org/10.1007/s11595-018-1833-8.

    Article  CAS  Google Scholar 

  14. Wang JH, Chen TJ, Yuan TY, et al. Mechanical and ceramifiable properties of silicone rubber filled with different inorganic fillers. Polym Degrad Stab. 2015;121:149–56. https://doi.org/10.1016/j.polymdegradstab.2015.09.003.

    Article  CAS  Google Scholar 

  15. Lou FP, Wu K, Wang Q, et al. Improved flame-retardant and ceramifiable properties of eva composites by combination of ammonium polyphosphate and aluminum hydroxide. Polym. 2019;11:125. https://doi.org/10.3390/polym11010125.

    Article  CAS  Google Scholar 

  16. Shen H, Chen F, Li JG, et al. The ceramifying process and mechanical properties of silicone rubber/ammonium polyphosphate/aluminium hydroxide/mica composites. Polym Degrad Stab. 2016;126:196–203. https://doi.org/10.1016/j.polymdegradstab.2016.02.010.

    Article  CAS  Google Scholar 

  17. Zhao D, Shen YC, Wang TW. Ceramifiable EVA/APP/SGF composites for improved ceramifiable properties. Polym Degrad Stab. 2018;150:140–7. https://doi.org/10.1016/j.polymdegradstab.2018.02.006.

    Article  CAS  Google Scholar 

  18. Gong XH, Shen YC, Wang TW. Improved ceramifiable properties of EVA composites with whitened and capsulized red phosphorus (WCRP). Rsc Adv. 2016;99:96984–9. https://doi.org/10.1039/C6RA22126B.

    Article  CAS  Google Scholar 

  19. Dong WX, Bao QF, Gu XY. Dry-pressing preparation of mullite columnar structure using waste gangue during firing and its properties. J Ceram Soc Jpn. 2017;125:75–8. https://doi.org/10.2109/jcersj2.16258.

    Article  CAS  Google Scholar 

  20. Li YM, Deng C, Shi XH, et al. Simultaneously improved flame retardance and ceramifiable properties of polymer-based composites via the formed crystalline phase at high temperature. Acs Appl Mater Interfaces. 2019;11:7459–71. https://doi.org/10.1021/acsami.8b21664.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao D, Xia ML, Shen YC, Wang TW. Three-dimensional cross-linking structures in ceramifiable EVA composites for improving self-supporting property and ceramifiable properties at high temperature. Polym Degrad Stab. 2019;162:94–101. https://doi.org/10.1016/j.polymdegradstab.2019.02.003.

    Article  CAS  Google Scholar 

  22. Zhang XP, Guan YY, Xie Y, Qiu D. “House-of-cards” structures in silicone rubber composites for superb anti-collapsing performance at medium high temperature. Rsc Adv. 2016;6:7970–6. https://doi.org/10.1039/C5RA26937G.

    Article  CAS  Google Scholar 

  23. Gong XH, Wang TW. Optimisation of the ceramic-like body for ceramifiable EVA-based composites. Sci Eng Compos Mater. 2017;24(4):599–607. https://doi.org/10.1515/secm-2015-0093.

    Article  CAS  Google Scholar 

  24. Hamdani S, Longuet C, Perrin D, et al. François ganachaud flame retardancy of silicone-based materials. Polm Degrad Stab. 2009;94:465–95. https://doi.org/10.1016/j.polymdegradstab.2008.11.019.

    Article  CAS  Google Scholar 

  25. Anyszka R, Bielinski DM, Drzejczyk MJ. Thermal behavior of silicone rubber-based ceramizable composites characterized by fourier transform infrared (FR-IR) spectroscopy and microcalorimetry. Appli Spec. 2013;67:1437–40. https://doi.org/10.1366/13-07045.

    Article  CAS  Google Scholar 

  26. Samyn F. Effect of zinc borate on the thermal degradation of ammonium polyphosphate. Thermochim Acta. 2007;456:134–44. https://doi.org/10.1016/j.tca.2007.02.006.

    Article  CAS  Google Scholar 

  27. Cinausero N. Synergistic effect between hydrophobic oxide nanoparticlesand ammonium polyphosphate on fire properties of poly(methyl methacrylate) andpolystyrene. Polym Degra Stabil. 2011;98:1445–54. https://doi.org/10.1016/j.polymdegradstab.2011.05.008.

    Article  CAS  Google Scholar 

  28. Qiu SL, Ma C, Wang X, et al. Melamine-containing polyphosphazene wrapped ammonium polyphosphate: A novel multifunctional organic-inorganic hybridflame retardant. J Hazard Mater. 2018;344:839–48. https://doi.org/10.1016/j.jhazmat.2017.11.018.

    Article  CAS  PubMed  Google Scholar 

  29. Yu ZL, Yang N, Qin VAKB, et al. Fire-retardant and thermally insulating phenolic-silica aerogels angew. Chem Int Ed. 2018;57:1–6. https://doi.org/10.1002/anie.201711717.

    Article  CAS  Google Scholar 

  30. Li XY, Miao DT, Ma HB, Tang AB. Kinetics of thermal degradation of halogen-free flame-retarded ethylene-co-vinyl acetate. J Southwest Univ Sci Tech. 2012;27:12–27.

    Google Scholar 

  31. Sultan BA, Sorvik E. Thermal degradation of EVA [ethylene-vinyl acetate copolymer] and EBA [ethylene-butylacrylate copolymer]-acomparison. II. Changes in unsaturation and side group structure. J App Polym. 1994;36:38–43. https://doi.org/10.1016/j.solener.2009.01.009.

  32. Mofokeng JP, Luyt AS. Morphology and thermal degradation studies of melt-mixed poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nano composites with TiO2 as filler. Polym Test. 2015;45:93–100. https://doi.org/10.1016/j.polymertesting.2015.05.007.

    Article  CAS  Google Scholar 

  33. Li XG. High-resolution thermogravimetry of cellulose esters. J Appl Polym Sci. 1999;71:573–81. https://doi.org/10.1002/(SICI)1097-4628.

    Article  CAS  Google Scholar 

  34. Zheng C, Li DF, Ek M. Mechanism and kinetics of thermal degradation of insulating materials developed from cellulose fiber and fire retardants. J Therm Anal Calorim. 2019;135:3015–27. https://doi.org/10.1007/s10973-018-7564-5.

    Article  CAS  Google Scholar 

  35. Nie SB, Tang MY, Xing SC, et al. Investigation of water influence on coal based on thermal oxidative degradation kinetics. J Therm Anal Calorim. 2020;139:1265–74. https://doi.org/10.1007/s10973-019-08503.

    Article  CAS  Google Scholar 

  36. Ahmed A, Afolabi EA, Garba MU, et al. Effect of particle size on thermal decomposition and devolatilization kinetics of melon seed shell. Chem Eng Commun. 2019;206:1228–40. https://doi.org/10.1080/00986445.2018.1555530.

    Article  CAS  Google Scholar 

  37. Jimenez PES, Perejon A, Juan AT, Luis APM. Predictions of polymer thermal degradation: relevance of selecting the proper kinetic model. J Therm Anal Calorim. 2022;147:2335–41. https://doi.org/10.1007/s10973-021-10649-x.

    Article  CAS  Google Scholar 

  38. Yuan LX, Qiang S, Chen F, et al. High strength retention and dimensional stability of silicone/alumina composite panel under fire. Fire Mater. 2012;66:254–63. https://doi.org/10.1002/fam.1107.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 22175088), the General Project of Basic Science (Natural Science) Research in Colleges and Universities in Jiangsu Province (No. 22KJB430028), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Postgraduate Research & Practice Innovation Program of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Contributions

DZ contributed to the study conceptualization, methodology, software, validation, formal analysis, resources, data curation, funding acquisition, and writing---original draft. Conceptualization, methodology, software, data curation, and validation were performed by TL and YX. Methodology, data curation, and validation were performed by JZ. Conceptualization, methodology, data curation, writing---review & editing, supervision, project administration, and funding acquisition were performed by YS and TW.

Corresponding authors

Correspondence to Yucai Shen or Tingwei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Liu, T., Xu, Y. et al. Investigation of the thermal degradation kinetics of ceramifiable silicone rubber-based composite. J Therm Anal Calorim 148, 6487–6499 (2023). https://doi.org/10.1007/s10973-023-12138-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12138-9

Keywords

Navigation