Skip to main content
Log in

Interdependency of pyrolysis and combustion: a case study for lignocellulosic biomass

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

It is intriguing to see how a storm kills a candle but catalyzes the spread of a forest or residential fire. The question is difficult to answer and requires a holistic approach. The underlying study employs a holistic approach to studying the fundamental of lignocellulosic biomass combustion. The study involves analysis of ignition properties, energy, and mass transport limitations, and the quantity of energy released/demanded at various stages of the combustion process. Combustion in a solid involves three primary stages such as pyrolysis, gasification, and oxidation. Pyrolysis, which is also the first step of the combustion process, is endothermic and requires energy from external sources to progress. On the other hand, gasification and oxidation are exothermic processes. The study hypothesizes that pyrolysis as an energy-demanding process has much influence on the overall combustion process. In this study, pyrolysis and combustion experiments are conducted using a thermogravimetric analyzer (TGA) at various heating rates (5, 10, 15, 20, 25 °C min−1) in N2 and air atmospheres, respectively. Mass loss (TG), differential curve (DTG), differential thermal analysis, and heat flow concerning temperature and time for both processes are recorded. The isoconversional methods such as Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose are employed to estimate the activation energy of the process with respect to the conversion. The differential calorimetry analysis of the process reveals that the combustion process has two exothermic zones: one related to the combustion of volatiles released during the pyrolysis step and another one related to the combustion of char. In the terms of magnitude, the second exothermic step is predominated by the first one. The FTIR analysis of the raw biomass and char produced from the isothermal reveals the structural transformation of the biomass concerning temperature and conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mureddu M, Dessi F, Orsini A, Ferrara F, Pettinau A. Air- and oxygen-blown characterization of coal and biomass by thermogravimetric analysis. Fuel. 2018;212:626–37.

    Article  CAS  Google Scholar 

  2. Barzegar R, Yozagtligil A, Olgun H, Atimtay AT. TGA and kinetic study of different torrefaction conditions of wood biomass under air and oxy-fuel combustion atmospheres. J Energy Inst. 2020;93:889–98.

    Article  CAS  Google Scholar 

  3. Ojha DK, Viju D, Vinu R. Fast pyrolysis kinetics of lignocellulosic biomass of varying compositions. Energy Convers Manag. 2021;10:100071.

    CAS  Google Scholar 

  4. Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 2012;38:68–94.

    Article  CAS  Google Scholar 

  5. Nussbaumer T. Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuels. 2003;17:1510–21.

    Article  CAS  Google Scholar 

  6. Reis JS, Araujo RO, Lima VMR, et al. Combustion properties of potential Amazon biomass waste for use as fuel. J Therm Anal Calorim. 2019;138:3535–9. https://doi.org/10.1007/s10973-019-08457-5.

    Article  CAS  Google Scholar 

  7. Shan F, Lin Q, Zhou K, Wu Y, Fu W, Zhang P, Song L, Shao C, Yi B. An experimental study of ignition and combustion of single biomass pellets in air and oxy-fuel. Fuel. 2017;188:277–84.

    Article  CAS  Google Scholar 

  8. Niu S, Chen M, Li Y, Xue F. Evaluation on the oxy-fuel combustion behaviour of dried sewage sludge. Fuel. 2016;178:129–38.

    Article  CAS  Google Scholar 

  9. Contreras ML, García-Frutos FJ, Bahillo A. Study of the thermal behaviour of coal/biomass blends during oxy-fuel combustion by thermogravimetric analysis. J Therm Anal Calorim. 2016;123:1643–55. https://doi.org/10.1007/s10973-015-5067-1.

    Article  CAS  Google Scholar 

  10. Magdziarz A, Wilk M, Straka R. Combustion process of torrefied wood biomass. J Therm Anal Calorim. 2017;127:1339–49. https://doi.org/10.1007/s10973-016-5731-0.

    Article  CAS  Google Scholar 

  11. Brillard A, Kehrli D, Douguet O, Gautier K, Tschamber V, Bueno M-A, Brilhac J-F. Pyrolysis and combustion of community masks: Thermogravimetric analyses, characterizations, gaseous emissions, and kinetic modeling. Fuel. 2021;306: 121644.

    Article  CAS  Google Scholar 

  12. Babinszki B, Sebestyen Z, Kohalmi L, Bozi J, Varhegyi G, Wang L, Skeiberg O, Czegeny Z. Effect of slow pyrolysis conditions on biocarbon yield and properties: characterization of the volatiles. Bioresour Technol. 2021;338:125567.

    Article  CAS  PubMed  Google Scholar 

  13. Liu J, Jiang X, Cai H, Gao F. Study of combustion characteristics and kinetics of agriculture briquette using thermogravimetric analysis. ACS Omega. 2021;6:15827–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Magdziarz A, Wilk M. Thermal characteristics of the combustion process of biomass and sewage sludge. J Therm Anal Calorim. 2013;114:519–29. https://doi.org/10.1007/s10973-012-2933-y.

    Article  CAS  Google Scholar 

  15. Suriapparao DV, Ojha DK, Ray T, et al. Kinetic analysis of co-pyrolysis of cellulose and polypropylene. J Therm Anal Calorim. 2014;117:1441–51. https://doi.org/10.1007/s10973-014-3866-4.

    Article  CAS  Google Scholar 

  16. Li C, Yamamoto Y, Suzuki M, et al. Study on the combustion kinetic characteristics of biomass tar under catalysts. J Therm Anal Calorim. 2009;95:991–7. https://doi.org/10.1007/s10973-008-9126-8.

    Article  CAS  Google Scholar 

  17. Ben Abdallah A, Ben Hassen Trabelsi A, Navarro MV, et al. Pyrolysis of tea and coffee wastes: effect of physicochemical properties on kinetic and thermodynamic characteristics. J Therm Anal Calorim. 2023. https://doi.org/10.1007/s10973-022-11878-4.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jayaraman K, Kok MV, Gokalp I. Combustion properties and kinetics of different biomass samples using TG–MS technique. J Therm Anal Calorim. 2017;127:1361–70. https://doi.org/10.1007/s10973-016-6042-1.

    Article  CAS  Google Scholar 

  19. Yuan R, Yu S, Shen Y. Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues. Waste Manag. 2019;87:86–96.

    Article  CAS  PubMed  Google Scholar 

  20. Xiao Z, Wang S, Luo M, Cai J. Combustion characteristics and synergistic effects during co-combustion of lignite and lignocellulosic components under oxy-fuel condition. Fuel. 2022;310:122399.

    Article  CAS  Google Scholar 

  21. Osman AI. Mass spectrometry study of lignocellulosic biomass combustion and pyrolysis with NOx removal. Renew Energy. 2020;146:484–96.

    Article  CAS  Google Scholar 

  22. Gonzelez DL, Lopez MF, Valverde JL, Silva S. Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass. Bioresour Technol. 2013;13:562–74.

    Article  Google Scholar 

  23. Vyazovking S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetic committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  Google Scholar 

  24. Soyler N, Ceylan S. Thermokinetic analysis and product characterization of waste tire-hazelnut shell co-pyrolysis: TG-FTIR and fixed bed reactor study. J Environ Chem Eng. 2021;9: 106165.

    Article  CAS  Google Scholar 

  25. Jenkins BM, Baxter LL, Miles TR Jr. Combustion properties of biomass. Fuel Process Technol. 1998;54:17–46.

    Article  CAS  Google Scholar 

  26. Bhoi S, Benerjee T, Mohanty K. Insights on the combustion and pyrolysis behavior of three different ranks of coals using reactive molecular dynamics simulation. RSC Adv. 2016;6:2559.

    Article  CAS  Google Scholar 

  27. Demirbas A. Combustion characteristics of different biomass fuels. Prog Energy Combust Sci. 2004;20:219–30.

    Article  Google Scholar 

  28. Giuntoli J, Jong DW, Verkooijen AHM, Piotrowska P, Zevenhoven M, Hupa M. Energy Fuels. 2010;24:5309–19.

    Article  CAS  Google Scholar 

  29. Ajimotokan HA, Ehindero AO, Ajao KS, Adeleke AA, Ikubanni PP, Shuaib-Babata YL. Combustion characteristics of fuel briquettes made from charcoal particles and sawdust agglomerates. Sci Afr. 2019;6: e00202.

    Google Scholar 

  30. Roy MM, Corscadden KW. An experimental study of combustion and emission of biomass briquettes in a domestic wood stove. Appl Energy. 2012;99:206–12.

    Article  CAS  Google Scholar 

  31. Warnatz J, Maas U, Dibble RW. Combustion of liquid and solid fuels. In: Combustion. Springer, Berlin, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04508-4_15

  32. Keivens RCK, Crmignani L, Bhattacharjee S. Ignition of solid fuels: a new approach to study the time delay. In: 11th US National Combustion Meeting, Pasadena, California (2019)

  33. Bharadwaj A, Baxter LL, Robinson AL. Effect of intraparticle heat and mass transfer on biomass devolatization: experimental results and model predictions. Energy Fuels. 2004;18(4):1021–31.

    Article  CAS  Google Scholar 

  34. Paul G, Olivier M, Esther A, Daniel M, Jean CL. Heat and mass transfer local modelling applied to biomass briquette drying. Procedia Manuf. 2019;35:149–54.

    Article  Google Scholar 

  35. Ojha DK, Vangala SPK, Vinu R. Analytical pyrolysis of bagasse and groundnut shell briquettes: kinetics and pyrolysate composition studies. Bioresour Technol Rep. 2021;15:100784.

    Article  CAS  Google Scholar 

  36. Di Blasi C. A transient, two-dimensional model of biomass pyrolysis. In: Bridgwater AV, Boocock DGB, editors. Developments in thermochemical biomass conversion. Dordrecht: Springer; 1997. https://doi.org/10.1007/978-94-009-1559-6_11.

    Chapter  Google Scholar 

  37. Park WC, Atreya A, Baum HR. Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combust Flame. 2010;157(3):481–94.

    Article  CAS  Google Scholar 

  38. Pecha MB, Arbelaez JIM, Garcia-Perez M, Chejne F, Ciesielski PN. Progress in understanding the four intra-particle phenomena of lignocellulose pyrolysis: chemical reactions, heat transfer, mass transfer, and phase change. Green Chem. 2019;21:2868–98.

    Article  CAS  Google Scholar 

  39. Nugraha MG, Saptoadi H, Hidayat M, Andersson B, Andersson R. Particle modelling in biomass combustion using orthogonal collocation. Appl Energy. 2019;255:113868.

    Article  CAS  Google Scholar 

  40. Ojha DK, Viju D, Vinu R. Fast pyrolysis Kinetics of Alkali Lignin: Evaluation of apparent rate parameters and product time evolution. Bioresour Technol. 2017;241:142–51.

    Article  CAS  PubMed  Google Scholar 

  41. Maduskar S, Facas GG, Papageorgiou C, Williams CL, Dauenhauer PJ. Five rules for measuring biomass pyrolysis rates: Pulse heated analysis of solid reaction kinetics of Lignocellulosic biomass. ACS Sustain Chem Eng. 2018;6:1387–99.

    Article  CAS  Google Scholar 

  42. Lim JY, McGregor J, Sederman AJ, Dennis JS. The role of the Boudouard and water-gas shift reaction in the methanation of CO or CO2 over Ni/γ-Al2O3 catalyst. Chem Eng Sci. 2016;152:754–66.

    Article  CAS  Google Scholar 

  43. Tarves PC, Mullen CA, Boateng AA. Effects of various reactive gas atmospheres on the properties of bio-oils produced using microwave pyrolysis. ACS Sustain Chem Eng. 2016;4(3):930–6.

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by Sponsored Research and Industrial Consultancy, Indian Institute of Technology Roorkee under the ‘Faculty Initation Grant’ scheme (Grant No. CHD/FIG/100895).

Author information

Authors and Affiliations

Authors

Contributions

MKM contributed to the experiment, data curation, and writing—original draft preparation. SA was involved in the data curation and writing—original draft preparation. DKO assisted in the conceptualization, methodology, writing—original draft preparation, reviewing and editing, and supervision.

Corresponding author

Correspondence to Deepak K. Ojha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, M.K., Anand, S. & Ojha, D.K. Interdependency of pyrolysis and combustion: a case study for lignocellulosic biomass. J Therm Anal Calorim 148, 5509–5519 (2023). https://doi.org/10.1007/s10973-023-12090-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12090-8

Keywords

Navigation