Skip to main content
Log in

Experimental investigations on drying kinetics and modeling of two-phase olive pomace dried in a hybrid solar greenhouse dryer

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Olive pomace is generated during the production of olive oil. The disposal of olive pomace presents a serious environmental issue to the agricultural community in Morocco. Among all actions devoted to the reduction of olive pomace waste, their revaluation seems to be the most efficient and advantageous from both environmental and economic points of view. Due to its high moisture content, solar drying constitutes an important and promising solution for a possible bio-fuel conversion of olive pomace. For this purpose, a modified uneven-span greenhouse dryer was designed and installed at the faculty of sciences Semlalia, Marrakech, Morocco. An experimental study of solar drying kinetics of the olive pomace was conducted to test the performances of the modified greenhouse dryer under a hybrid (solar/hot air) forced convection mode. The hot-air blower was supplied by electricity from a PV array installed near the greenhouse. The mean temperatures of air within the greenhouse and of the olive waste during the drying hours reached, respectively, 63 °C and 55 °C (from August 3rd to August 5th). The duration of the drying operation of 300 kg of waste from a moisture content of 50 mass% to 19 mass% was 27 h, which was low compared to the open sun drying. Therefore, hybrid forced mode enabled a considerable reduction in drying time, being an aspect to take into account for its use during low solar radiation. The drying kinetics of thin layer two-phase olive pomace was also investigated. The Two-term Gaussian model was found to be the most suitable model to describe the thin layer drying behavior of the two-phase olive pomace dried under hybrid forced convection greenhouse drying mode. In addition, the Fourier series was used to solve the diffusivity equation inside the two-phase olive pomace. The effective diffusivity was found to be 2.0 10–09 m2 s−1 and 2.3 10–09 m2 s−1 using the linear fit and the slope from two successive points methods, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are not publicly available due to confidential issues but are available from the corresponding author on reasonable request.

Abbreviations

η (%):

Drying efficiency

Q f (W):

Power of the extraction fans

m ev (kg):

Mass of water evaporated from the two-phase olive pomace

m i (kg):

Initial mass of the two-phase olive pomace

h L (kJ kg 1):

Latent heat of evaporation of water

M i :

Initial moisture content

I (W m 2):

Solar radiation

M f :

Final moisture content

τ :

Greenhouse cover transmission

M wt :

Instantaneous moisture content on a wet basis

A (m2):

Greenhouse floor area

SEC (kWh kg 1):

Specific energy consumption

t (h):

Drying time

SMER (kg kWh 1):

Specific moisture extraction rate

Q b(W):

Power of the hot air blower

MR:

Moisture ratio, dimensionless value

References

  1. Meziane S. Drying kinetics of olive pomace in a fluidized bed dryer. Energy Convers Manag. 2011;52(3):1644–9. https://doi.org/10.1016/j.enconman.2010.10.027.

    Article  Google Scholar 

  2. Bouraoui C, Debenest G, Ben Nejma F. Numerical performance assessment of a solar greenhouse dryer for the drying of Olive Mill Wastewater. J Therm Anal Calorim. 2022;147(15):8381–95. https://doi.org/10.1007/S10973-021-11134-1/METRICS.

    Article  CAS  Google Scholar 

  3. K. Apostolos and S. Fereidoon, 2017 Olives and olive oil as functional foods.

  4. Guida MY, et al. Thermochemical treatment of olive mill solid waste and olive mill wastewater: pyrolysis kinetics. J Therm Anal Calorim. 2016;123(2):1657–66. https://doi.org/10.1007/S10973-015-5061-7/METRICS.

    Article  CAS  Google Scholar 

  5. Khayer A, Bari M, Akratos CS, Vayenas DV, Pavlou S. International biodeterioration & biodegradation olive mill waste composting : a review. Int Biodeterior Biodegradation. 2013;85:108–19. https://doi.org/10.1016/j.ibiod.2013.06.019.

    Article  CAS  Google Scholar 

  6. Muik B, Lendl B, Ayora-cañada LPMJ. Determination of oil and water content in olive pomace using near infrared and Raman spectrometry a comparative study. Anal Bioanal Chem. 2004;379(1):35–41. https://doi.org/10.1007/s00216-004-2493-5.

    Article  CAS  PubMed  Google Scholar 

  7. Montero I, Miranda MT, Sepúlveda FJ, Arranz JI, Rojas CV, Nogales S. Solar dryer application for olive oil mill wastes. Energies. 2015;8(12):14049–63. https://doi.org/10.3390/en81212415.

    Article  Google Scholar 

  8. Papaioannou EH, Patsios SI, Karabelas AJ, Philippopoulos NA. Journal of environmental chemical engineering characterization of condensates from an indirect olive oil pomace drying process : the effect of drying temperature. Biochem Pharmacol. 2013;1(4):831–7. https://doi.org/10.1016/j.jece.2013.07.025.

    Article  CAS  Google Scholar 

  9. Aboulkas A, El Harfi K. Co-pyrolysis of olive residue with poly(vinyl chloride) using thermogravimetric analysis. J Therm Anal Calorim. 2009;95(3):1007–13. https://doi.org/10.1007/S10973-008-9315-5/METRICS.

    Article  CAS  Google Scholar 

  10. Aboulkas A, El Harfi K, Nadifiyine M, El Bouadili A. Thermogravimetric characteristics and kinetic of co-pyrolysis of olive residue with high density polyethylene. J Therm Anal Calorim. 2008;91(3):737–43. https://doi.org/10.1007/S10973-007-8661-Z/METRICS.

    Article  CAS  Google Scholar 

  11. Asimakidou T, Chrissafis K. Thermal behavior and pyrolysis kinetics of olive stone residue. J Therm Anal Calorim. 2022;147(16):9045–54. https://doi.org/10.1007/S10973-021-11163-W/METRICS.

    Article  CAS  Google Scholar 

  12. Manchanda H, Kumar M. Performance evaluation of a locally designed stepped solar distillation-cum-active drying unit. J Therm Anal Calorim. 2022;147(6):4383–95. https://doi.org/10.1007/s10973-021-10835-x.

    Article  CAS  Google Scholar 

  13. Sunil V, Sharma N. Experimental investigation of the performance of an indirect-mode natural convection solar dryer for drying fenugreek leaves. J Therm Anal Calorim. 2014;118(1):523–31. https://doi.org/10.1007/s10973-014-3949-2.

    Article  CAS  Google Scholar 

  14. Goel V, Bhattacharyya S, Kumar R, Pathak SK, Tyagi VV, Saini RP. Identification of barriers and drivers to implementation of solar drying technologies. J Therm Anal Calorim. 2022;164:1–24.

    Google Scholar 

  15. Prakash O, Kumar A. Solar greenhouse drying: a review. Renew Sustain Energy Rev. 2014;29:905–10. https://doi.org/10.1016/j.rser.2013.08.084.

    Article  Google Scholar 

  16. Beigi M, Torki M, Khoshnam F, Tohidi M. Thermodynamic and environmental analyses for paddy drying in a semi-industrial dryer. J Therm Anal Calorim. 2021;146(1):393–401. https://doi.org/10.1007/S10973-020-09968-2/METRICS.

    Article  CAS  Google Scholar 

  17. Baysan U, Koç M, Güngör A, Ertekin FK. Investigation of drying conditions to valorize 2-phase olive pomace in further processing. Dry Technol. 2020;40(1):65–76. https://doi.org/10.1080/07373937.2020.1770279.

    Article  CAS  Google Scholar 

  18. Fudholi A, Sopian K, Alghoul MA, Ruslan MH, Othman MY. Performances and improvement potential of solar drying system for palm oil fronds. Renew Energy. 2015;78:561–5. https://doi.org/10.1016/j.renene.2015.01.050.

    Article  Google Scholar 

  19. Maragkaki A, Markakis FGN, Tsompanidis GSC. Initial investigation of the solar drying method for the drying of olive oil by-products. Waste and Biomass Valorization. 2016. https://doi.org/10.1007/s12649-016-9505-5.

    Article  Google Scholar 

  20. Gilago MC, Mugi VR, VP, C. Evaluating the performance of an indirect solar dryer and drying parameters of pineapple: comparing natural and forced convection. J Therm Anal Calorim. 2023;104:1–9. https://doi.org/10.1007/S10973-023-11955-2.

    Article  Google Scholar 

  21. Mellalou A, Riad W, Hnawi SK, Tchenka A, Bacaoui A, Outzourhit A. Experimental and CFD investigation of a modified uneven-span greenhouse solar dryer in no-load conditions under natural convection mode. Int J Photoenergy. 2021;2021:1–12. https://doi.org/10.1155/2021/9918166.

    Article  CAS  Google Scholar 

  22. Mellalou A, Riad W, Mouaky A, Bacaoui A, Outzourhit A. Optimum design and orientation of a greenhouse for seasonal winter drying in Morocco under constant volume constraint. Sol Energy. 2021;230(August):321–32. https://doi.org/10.1016/j.solener.2021.10.050.

    Article  Google Scholar 

  23. Forson FK, Nazha MAA, Akuffo FO, Rajakaruna H. Design of mixed-mode natural convection solar crop dryers : application of principles and rules of thumb. Renewable Energy. 2007;32:2306–19. https://doi.org/10.1016/j.renene.2006.12.003.

    Article  Google Scholar 

  24. ELkhadraoui A, Kooli S, Hamdi I, Farhat A. Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape. Renew Energy. 2015;77:1–8. https://doi.org/10.1016/j.renene.2014.11.090.

    Article  Google Scholar 

  25. Erick César LV, Ana Lilia CM, Octavio GV, Isaac PF, Rogelio BO. Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum). Renew Energy. 2020;147:845–55. https://doi.org/10.1016/j.renene.2019.09.018.

    Article  Google Scholar 

  26. Mellalou A, Mouaky A, Bacaoui A, Outzourhit A. A comparative study of greenhouse shapes and orientations under the climatic conditions of Marrakech, Morocco. Int J Environ Sci Technol. 2021. https://doi.org/10.1007/s13762-021-03556-z.

    Article  Google Scholar 

  27. Kiburi FG, Kanali CL, Kituu GM, Ajwang PO, Ronoh EK. Performance evaluation and economic feasibility of a solar-biomass hybrid greenhouse dryer for drying banana slices. Renew Energy Focus. 2020. https://doi.org/10.1016/j.ref.2020.06.009.

    Article  Google Scholar 

  28. Xu B, Wang D, Li Z, Chen Z. Drying and dynamic performance of well-adapted solar assisted heat pump drying system. Renew Energy. 2020;164:1209–305. https://doi.org/10.1016/j.renene.2020.10.104.

    Article  Google Scholar 

  29. Deeto S, Thepa S, Monyakul V, Songprakorp R. The experimental new hybrid solar dryer and hot water storage system of thin layer coffee bean dehumidification. Renew Energy. 2017. https://doi.org/10.1016/j.renene.2017.09.009.

    Article  Google Scholar 

  30. Ortiz-Rodríguez NM, García-Valladares O, Pilatowsky-Figueroa I, Menchaca-Valdez AC. Solar-LP gas hybrid plant for dehydration of food. Appl Therm Eng. 2020;177:115496. https://doi.org/10.1016/j.applthermaleng.2020.115496.

    Article  Google Scholar 

  31. Sethi VP, Dhiman M. Design, space optimization and modelling of solar-cum-biomass hybrid greenhouse crop dryer using fl ue gas heat transfer pipe network. Sol Energy. 2020;206:120–35. https://doi.org/10.1016/j.solener.2020.06.006.

    Article  Google Scholar 

  32. Taskin O, Polat A, Etemoglu AB, Izli N. Energy and exergy analysis, drying kinetics, modeling, microstructure and thermal properties of convective-dried banana slices. J Therm Anal Calorim. 2022;147(3):2343–51. https://doi.org/10.1007/s10973-021-10639-z.

    Article  CAS  Google Scholar 

  33. Mondal IH, Rangan L, Uppaluri RVS. Symphony of kinetics and statistical design approaches for response analysis during tray drying of Lagenaria siceraria leaves. J Therm Anal Calorim. 2021;145(5):2389–403. https://doi.org/10.1007/s10973-020-09782-w.

    Article  CAS  Google Scholar 

  34. Kesavan S, Arjunan TV, Vijayan S. Thermodynamic analysis of a triple-pass solar dryer for drying potato slices. J Therm Anal Calorim. 2019;136(1):159–71. https://doi.org/10.1007/s10973-018-7747-0.

    Article  CAS  Google Scholar 

  35. Vijayan S, Arjunan TV, Kumar A. Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices. Renew Energy. 2020;146:2210–23. https://doi.org/10.1016/j.renene.2019.08.066.

    Article  Google Scholar 

  36. Malakar S, Arora VK, Nema PK. Design and performance evaluation of an evacuated tube solar dryer for drying garlic clove. Renew Energy. 2021;168:568–80. https://doi.org/10.1016/j.renene.2020.12.068.

    Article  Google Scholar 

  37. Dutta P, Dutta PP, Kalita P. Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer. Renew Energy. 2021;163:599–612. https://doi.org/10.1016/j.renene.2020.08.118.

    Article  Google Scholar 

  38. Nourhène B, Mohammed K, Nabil K. Experimental and mathematical investigations of convective solar drying of four varieties of olive leaves. Food Bioprod Process. 2008;86(3):176–84. https://doi.org/10.1016/j.fbp.2007.10.001.

    Article  CAS  Google Scholar 

  39. Akgun NA, Doymaz I. Modelling of olive cake thin-layer drying process. J Food Eng. 2005;68(4):455–61. https://doi.org/10.1016/j.jfoodeng.2004.06.023.

    Article  Google Scholar 

  40. Celma AR, Rojas S, López F, Montero I, Miranda T. Thin-layer drying behaviour of sludge of olive oil extraction. J Food Eng. 2007;80(4):1261–71. https://doi.org/10.1016/j.jfoodeng.2006.09.020.

    Article  CAS  Google Scholar 

  41. Ortiz-Rodríguez NM, Marín-Camacho JF, González AL, García-Valladares O. Drying kinetics of natural rubber sheets under two solar thermal drying systems. Renew Energy. 2021;165:438–54. https://doi.org/10.1016/j.renene.2020.11.035.

    Article  Google Scholar 

  42. Murali S, Amulya PR, Alfiya PV, Delfiya DSA, Samuel MP. Design and Performance Evaluation of Solar - LPG Hybrid Dryer for Drying of Shrimps. Renew Energy. 2019. https://doi.org/10.1016/j.renene.2019.10.002.

    Article  Google Scholar 

  43. Vengsungnle P, Jongpluempiti J, Srichat A, Wiriyasart S, Naphon P. Thermal performance of the photovoltaic-ventilated mixed mode greenhouse solar dryer with automatic closed loop control for Ganoderma drying. Case Stud Therm Eng. 2020;21:100659. https://doi.org/10.1016/j.csite.2020.100659.

    Article  Google Scholar 

  44. Tripathy PP, Kumar S. Modeling of heat transfer and energy analysis of potato slices and cylinders during solar drying. Appl Therm Eng. 2009;29(5–6):884–91. https://doi.org/10.1016/j.applthermaleng.2008.04.018.

    Article  Google Scholar 

  45. Crank J. The mathematics of diffusion. Oxford: Clarendon Press; 1975.

    Google Scholar 

  46. Nukulwar MR, Tungikar VB. Drying kinetics and thermal analysis of turmeric blanching and drying using solar thermal system. Sustain Energy Technol Assessments. 2021;45:101120. https://doi.org/10.1016/j.seta.2021.101120.

    Article  Google Scholar 

  47. Patil RC, Gawande RR. Mathematical modeling of solar drying systems. Solar Drying Technol. 2017. https://doi.org/10.1007/978-981-10-3833-4_9.

    Article  Google Scholar 

  48. Fudholi A, Bakhtyar B, Saleh H, Ruslan MH, Othman MY, Sopian K. Drying of salted silver jewfish in a hybrid solar drying system and under open sun: modeling and performance analyses. Int J Green Energy. 2016;13(11):1135–44. https://doi.org/10.1080/15435075.2016.1175347.

    Article  Google Scholar 

  49. Meziane S, Mesbahi N. Determination of moisture diffusivity and activation energy in thin layer drying of olive Pomace. Int J Food Eng. 2012. https://doi.org/10.1515/1556-3758.2648.

    Article  Google Scholar 

  50. Rabha DK, Muthukumar P, Somayaji C. Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger. Renew Energy. 2017;105:764–73. https://doi.org/10.1016/j.renene.2017.01.007.

    Article  Google Scholar 

  51. Montero I, Miranda T, Arranz JI, Rojas CV. Thin layer drying kinetics of by-products from olive oil processing. Int J Mol Sci. 2011;12(11):7885–97. https://doi.org/10.3390/ijms12117885.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was performed in the framework of the Bioresol project. The authors are grateful to IRESEN for the financial support.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MA: Writing, Methodology, Data acquisition, Original draft preparation, Experience processing RW: Data acquisition, Experience processing BA: Visualization, Investigation OA: Writing, Reviewing, Editing, Investigation and Supervision.

Corresponding author

Correspondence to Abderrahman Mellalou.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mellalou, A., Riad, W., Bacaoui, A. et al. Experimental investigations on drying kinetics and modeling of two-phase olive pomace dried in a hybrid solar greenhouse dryer. J Therm Anal Calorim 148, 5471–5483 (2023). https://doi.org/10.1007/s10973-023-12063-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12063-x

Keywords

Navigation