Skip to main content

Advertisement

Log in

Initial Investigation of the Solar Drying Method for the Drying of Olive Oil By-Products

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study, a greenhouse-type solar dryer was developed in order to demonstrate an olive oil by-product and agro-residue Managing System, which uses solar drying processes for the treatment of olive oil mill residues to decrease the high energy consumption of the drying operations, thus decreasing the environmental impact of these residues. The resulting by-products, once dried out, have a final application as fuel. The greenhouse, with a roof height of 3.5 m and total area of 150 m2, consisted of three 3.0 × 1.5 × 0.20 m concrete tanks, where the drying of olive pomace (two- and three-phase olive mills), leaves and biomass from pruning for the production of solid biofuels was examined. The two-phase olive mill by-products required more drying time than three-phase olive mill by-products due to higher moisture content. Moreover, the moisture rate was positively related to minimum relative humidity and the highest material and ambient temperature. Using free solar energy for drying olive oil by-products can be beneficial from the point of view of energy consumption and, consequently, the drying system cost. The main innovation of the process is using the most abundantly available energy source in Greece—and the Mediterranean basin generally—the sun.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hall, D.O., Rosillo-Calle, F., Williams, R.H., Woods, J.: Biomass for Energy: Supply Prospects. In: Johansson, T.B., Kelly, H., Reddy, A.K.N., Williams, R.H. (eds.) Renewable Energy, Sources for Fuels and Electricity, pp. 593–651. Island Press, Washington, DC (1993)

    Google Scholar 

  2. Goldemberg, J., Johanson, T.B.: World Energy Assessment. Overview 2004 Update, United Nation Development Programme, New York (2004)

  3. Junginger, M., de Visser, E., Hjort-Gregersen, K., Koornneef, J., Raven, R., Faaij, A.: Technological learning in bioenergy systems. Energy Policy 34(18), 4024–4041 (2006)

    Article  Google Scholar 

  4. Hamelinck, C.N., Suurs, R.A.A., Faaij, A.P.C.: International bioenergy transport costs and energy balance. Biomass Bioenergy 29, 114–134 (2005)

    Article  Google Scholar 

  5. Hamelinck, C.N., Faaij, A.P.C.: Outlook for advanced biofuels. Energy Policy 34, 3268–3283 (2006)

    Article  Google Scholar 

  6. Turkenburg. W.C.: Renewable Energy Technologies. UNDP/UN-DESA/WEC, pp. 219–224 (2000)

  7. Van den Broek, R.: Sustainability of Biomass Electricity Systems, p. 216. Department of Science Technology & Society, Utrecht University, Utrecht (2000)

    Google Scholar 

  8. Maragkaki, A., Kotrotsios, T., Samaras, P., Manou, A., Lasaridi, K., Manios, T.: Quantitative and qualitative analysis of biomass from agro-industrial processes in the central macedonia region, Greece. Waste Biomass Valorization (2015). doi:10.1007/s12649-015-9448-2

    Google Scholar 

  9. Meziane, S.: Drying kinetics of olive pomace in a fluidized bed dryer. Energy Convers. Manage. 52, 1644–1649 (2011)

    Article  Google Scholar 

  10. Dermeche, S., Nadour, M., Larroche, C., Moulti-Mati, F., Michaud, P.: Olive mill wastes: biochemical characterizations and valorization strategies. Process Biochem. 48(10), 1532–1552 (2013)

    Article  Google Scholar 

  11. Russo, G., Vivaldi, G.A., de Gennaro, B., Camposeo, S.: Environmental sustainability of different soil management techniques in a high-density olive orchard. J. Clean. Prod. (2014). doi:10.1016/j.jclepro.2014.06.064

    Google Scholar 

  12. El-Abbassi, A., Kiai, H., Raiti, J., Hafidi, A.: Application of ultrafiltration for olive processing wastewaters treatment. J. Clean. Prod. 65, 432–438 (2014)

    Article  Google Scholar 

  13. Pimchuai, A., Dutta, A., Basu, P.: Torrefaction of agriculture residue to enhance combustible properties. Energy Fuels 24, 4638–4645 (2010)

    Article  Google Scholar 

  14. Alwi, S.R.W., Manan, Z.A., Klemes, J.J., Huisingh, D.: Sustainability engineering for the future. J. Clean. Prod. 71, 1–10 (2014)

    Article  Google Scholar 

  15. Bagatin, R., Klemes, J.J., Reverberi, A.P., Huisingh, D.: Conservation and improvements in water resource management: a global challenge. J. Clean. Prod. 77, 1–9 (2014)

    Article  Google Scholar 

  16. Klemes, J.J., Varbanov, P.S., Kravanja, Z.: Recent developments in process integration. Chem. Eng. Res. Des. 91(10), 2037–2053 (2013)

    Article  Google Scholar 

  17. Alba, J., Hidalgo, F.J., Ruiz, M.A., Martínez, F., Moyano, M.J., Borja, R.: Elaboracion de aceite de oliva virgen. In: Barranco, D., Fernandez-Escobar, R., Rallo, L. (eds.) El Cultivo Del Olivo, pp. 551–588. Mundi-Prensa, Madrid (2001)

    Google Scholar 

  18. Fagernas, L., Brammer, J., Wilen, C., Lauer, M., Verhoeff, F.: Drying of biomass for second generation synfuel production. Biomass Bioenergy 34(9), 1267–1277 (2010)

    Article  Google Scholar 

  19. Holmberg, H., Ahtila, P.: Evaluation of energy efficiency in biofuel drying by means of energy and exergy analyses. Appl. Therm. Eng. 25(17–18), 3115–3128 (2005)

    Article  Google Scholar 

  20. Farhad, S., Saffar-Avval, M., Younessi-Sinaki, M.: Efficient design of feedwater heaters network in steam power plants using pinch technology and exergy analysis. Int. J. Energy Res. 32(1), 1–11 (2008)

    Article  Google Scholar 

  21. Panwar, N.L., Kaushik, S.C., Kothari, S.: Role of renewable energy sources in environmental protection: a review. Renew. Sustain. Energy Rev. 15(3), 1513–1524 (2011)

    Article  Google Scholar 

  22. Ekechukwu, O.V., Norton, B.: Review of solar-energy drying systems II: an overview of solar drying technology. Energy Convers. Manage. 40(6), 615–655 (1999)

    Article  Google Scholar 

  23. Sharma, A., Chen, C.R., Lan, N.V.: Solar-energy drying systems: a review. Renew. Sustain. Energy Rev. 13(6–7), 1185–1210 (2009)

    Article  Google Scholar 

  24. Celma, A.R., Rojas, S., López, F., Montero, I., Miranda, T.: Thin-layer drying behaviour of sludge of olive oil extraction. J. Food Eng. 80, 1261–1271 (2007)

    Article  Google Scholar 

  25. Kudra, T., Mujumdar, A.S.: Advanced Drying Technologies. Marcel Dekker, Inc., New York (2002)

    Google Scholar 

  26. Bennamoun, L.: Solar drying of wastewater sludge: a review. Renew. Sustain. Energy Rev. 16, 1061–1073 (2012)

    Article  Google Scholar 

  27. Salihoglu, N.K., Pinarli, V., Salihoglu, G.: Solar drying in sludge management in Turkey. Renew. Energy 32, 1661–1675 (2007)

    Article  Google Scholar 

  28. Arjona, R., Gracia, A., Ollero, P.: The drying of alpeorujo, a waste product of the olive mill industry. J. Food Eng. 41, 229–234 (1999)

    Article  Google Scholar 

  29. Gogus, F., Maskan, M.: Drying of olive pomace by a combined microwave-fan assisted convection oven. Nahrung 45, 129–132 (2001)

    Article  Google Scholar 

  30. Doymaz, I., Gorel, O., Akgun, N.A.: Drying characteristics of the solid by-product of olive oil extraction. Biosyst. Eng. 88, 213–219 (2004)

    Article  Google Scholar 

  31. Roux, N., Jung, D., Pannejon, J., Lemoine, C.: Modelling of the solar drying process Solia. In: Pierucci, S., Ferraris, G.B. (eds.) Proceeding of 20th European Symposium on Computer Aided Process Engineering (2010)

  32. Slim, R., Zoughaib, A., Clodic, D.: Modeling of a solar and heat pump sludge drying system. Int. J. Refrig. 31, 1156–1168 (2008)

    Article  Google Scholar 

  33. Montero, I., Miranda, T., Arranz, J., Rojas, C.: Thin layer drying kinetics of by-products from olive oil processing. Int. J. Mol. Sci. 12, 7885–7897 (2011)

    Article  Google Scholar 

  34. Montero, I., Miranda, T., Arranz, J., Rojas, C.: Solar dryer application for olive oil mill wastes. Energies 8, 14049–14063 (2015)

    Article  Google Scholar 

  35. Vera, D., Jurado, F., Margaritis, N., Grammelis, P.: Experimental and economic study of a gasification plant fuelled with olive industry wastes. Energy Sustain. Dev. 23, 247–257 (2014)

    Article  Google Scholar 

  36. Vaxelaire, J., Cézac, P.: Moisture distribution in activated sludges: a review. Water Res. 38(9), 2215–2230 (2004)

    Article  Google Scholar 

  37. Ekechukwu, O.V., Norton, B.: Review of solar-energy drying systems II: an overview of solar drying technology. Energy Convers. Manag. 40(6), 615–655 (1999)

    Article  Google Scholar 

  38. Velis, C.A., Longhurst, P.J., Drew, G.H., Smith, R., Pollard, S.J.T.: Biodrying for mechanical–biological treatment of wastes: a review of process science and engineering. Bioresour. Technol. 100(11), 2747–2761 (2009)

    Article  Google Scholar 

  39. Ekechukwu, O.V.: Experimental Studies of Integral-Type Natural Circulation Solar-Energy Tropical Crop Dryers. Cranfield Institute of Technology, Cranfield (1987)

    Google Scholar 

  40. Shao, L., Wang, T., Zhao, L., Wang, G., Lü, F., He, P.: The effect of adding straw on natural solar sludge drying. Dry. Technol. 33, 414–419 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This research has been co-funded by the European Union (European Regional Development Fund) and Greek national funds through the National Strategic Reference Framework (NSRF): Program “Development of Industrial Research and Technology (PAVET) 2013” (1359-ΒΕΤ-2013, Production of Organic Fertilizer and Biofuels from Olive Mill Wastes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Maragkaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maragkaki, A., Galliou, F., Markakis, N. et al. Initial Investigation of the Solar Drying Method for the Drying of Olive Oil By-Products. Waste Biomass Valor 7, 819–830 (2016). https://doi.org/10.1007/s12649-016-9505-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9505-5

Keywords

Navigation