Skip to main content
Log in

The use of metakaolin as a source of alumina in supersulfated in cements order to increase the formation of ettringite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The production of greenhouse gases has provoked discussion on global warming and motivated the scientific community to seek alternative options to Portland cement that are capable of reducing the emission of CO2, such as supersulfated cements (SSCs). SSCs are comprised of blast furnace slag (up to 90%), calcium sulfate (up to 20%), and an alkaline activator (up to 5%), which form, as primary reaction products, ettringite and calcium-silicate-hydrate (C–S–H). A higher alumina content is desired in blast furnace slag since the compound enhances ettringite formation and, consequently, increases the mechanical strength of the system. In the present study, metakaolin (MK), which is rich in alumina, was used to replace slag. The results showed that MK was an efficient raw material for use in supersulfated cements, capable of partially replacing blast furnace slag containing low alumina content. A small level of MK replacement (5%) reduced the absorption values and increased the compressive strength from 23 to 44 MPa of the cement. This result was attributed to the greater formation of ettringite, which led to a consequent reduction in porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sindicato Nacional das Indústrias de Cimento (SNIC). Relatório Anual de 2019. 44p, 2019.

  2. Gruskovnjak A, Lothenbach B, Winnefeld F, Münch B, Figi R, Ko SC, Adler M, Mäder U. Quantification of hydration phases in supersulfated cements: review and new approaches. Adv Cem Res. 2011;23:265–75. https://doi.org/10.1680/adcr.2011.23.6.265.

    Article  CAS  Google Scholar 

  3. Angulski Da Luz C, Hooton RD. Influence of curing temperature on the process of hydration of supersulfated cements at early age. Cem Concr Res. 2015;77:69–75. https://doi.org/10.1016/j.cemconres.2015.07.002.

    Article  CAS  Google Scholar 

  4. Rubert S, Angulski da Luz C, Varela F, Pereira Filho MV, Hooton JI, RD,. Hydration mechanisms of supersulfated cement: The role of alkali activator and calcium sulfate content. J Therm Anal Calorim. 2018;134:971–80. https://doi.org/10.1007/s10973-018-7243-6.

    Article  CAS  Google Scholar 

  5. Zhou Y, Peng Z, Ma T. The influence of two types of alkali activators on the microstructure and performance of supersulfated cement concrete: mitigating the strength and carbonation resistance. Ce Concr Compos. 2021;118:103947. https://doi.org/10.1016/j.cemconcomp.2021.103947.

    Article  CAS  Google Scholar 

  6. Pinto SR, Angulski da Luz C, Munhoz GS, Medeiros-Junior RA. Resistance of phosphogypsum-based supersulfated cement to carbonation and chloride ingress. Constr Build Mater. 2020;263:120640. https://doi.org/10.1016/j.conbuildmat.2020.120640.

    Article  CAS  Google Scholar 

  7. Trentin PO, Magro IC, Souza LR, Bonini JS, Angulski da Luz C, Medeiros-Junior RA, Hooton RD. Influence of content and source of calcium sulfate on supersulfated cement exposed to sodium and magnesium sulfate attack at later ages. J Mater Civ Eng. 2023;35:04022364. https://doi.org/10.1061/%28ASCE%29MT.1943-5533.0004539.

    Article  CAS  Google Scholar 

  8. Gracioli B, Angulski da Luz C, Beutler CS, Pereira Filho JI, Frare A, Rocha JC, Cheriaf M, Hooton RD. Influence of the calcination temperature of phosphogypsum on the performance of supersulfated cements. Constr Build Mater. 2020;262:119961. https://doi.org/10.1016/j.conbuildmat.2020.119961.

    Article  CAS  Google Scholar 

  9. Angulski Da Luz C, Hooton RD. Influence of supersulfated cement composition on hydration process. J Mater Civ Eng. 2019;31:2–7. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002720.

    Article  Google Scholar 

  10. Masoudi R, Hooton RD. Examining the hydration mechanism of supersulfated cements made with high and low-alumina slags. Cem Concr Compos. 2019;103:193–203. https://doi.org/10.1016/j.cemconcomp.2019.05.001.

    Article  CAS  Google Scholar 

  11. Masoudi R, Hooton RD. Influence of alkali lactates on hydration of supersulfated cement. Constr Build Mater. 2020;239:117844. https://doi.org/10.1016/j.conbuildmat.2019.117844.

    Article  CAS  Google Scholar 

  12. Nguyen HA, Chang TP, Shih JY, Chen CT. Influence of low calcium fly ash on compressive strength and hydration product of low energy super sulfated cement paste. Cem Concr Compos. 2019. https://doi.org/10.1016/j.cemconcomp.2019.02.019.

    Article  Google Scholar 

  13. Volkweis, l., Bortolozzo, P.H., MAntelli, D., Perardt, M., Angulski da Luz, C. , Pereira Filho, J.I. Metakaolin as aluminum source in Supersulfated Cement. In: 7th International Congress on Ceramics & 62º Congresso Brasileiro de Cerâmica, 2018, Foz do Iguaçu. 7th International Congress on Ceramics & 62º Congresso Brasileiro de Cerâmica. São Paulo: Metallum, 2018. v. 1. p. 223–230.

  14. Cai R, He Z, Tang S, Wu T, Chen E. The early hydration of metakaolin blended cements by non-contact impedance measurement. Cem Concr Compos. 2018;92:70–81. https://doi.org/10.1016/j.cemconcomp.2018.06.001.

    Article  CAS  Google Scholar 

  15. Nita, C., Vanderley, M., Cleber, M., Savastano, Hj., Takeashi, M.S., 2004. Effect of metakaolin on the preformance of PVA and cellulose fibers reinforced cement. Proc. 9th Int. Conf. Inorganic-bonded Compos. Mater. Moscow 1–11.

  16. Ambroise J, Maximilien S, Pera J. Properties of metakaolin blend cements. Adv Cem Based Mater. 1994;1:161–8.

    Article  CAS  Google Scholar 

  17. Bajpai R, Choudhary K, Srivastava A, Sangwan KS, Singh M. Environmental impact assessment of fly ash and silica fume based geopolymer concrete. J Clean Prod. 2020;254:120147.

    Article  CAS  Google Scholar 

  18. Cassagnabère F, Mouret M, Escadeillas G, Broilliard P, Bertrand A. Metakaolin, a solution for the precast industry to limit the clinker content in concrete: Mechanical aspects. Constr Build Mater. 2010;24:1109–18. https://doi.org/10.1016/j.conbuildmat.2009.12.032.

    Article  Google Scholar 

  19. Pelisser F, Bernardin AM, Michel MD, da Luz CA. Compressive strength, modulus of elasticity and hardness of geopolymeric cement synthetized from non-calcined natural kaolin. J Clean Prod. 2021;280:124293. https://doi.org/10.1016/j.jclepro.2020.124293.

    Article  CAS  Google Scholar 

  20. EN 15743, 2009 Supersulfated cement – Composition, specifications and conformity criteria. European, Committee for Standartization (CEN), Burssels, Belgium

  21. Associação Brasileira de Normas Tecnicas (ABNT). NBR 15894.2018 Metacaulim para uso com cimento Portland em concreto, argamassa e pasta - Parte 1: Requisitos. Rio de Janeiro

  22. Kocak Y. Effects of metakaolin on the hydration development of Portland–composite cement. J Build Eng. 2020;31:101419. https://doi.org/10.1016/j.jobe.2020.101419.

    Article  Google Scholar 

  23. Associação Brasileira de Normas Tecnicas (ABNT). NBR 16697. 2018 Cimento Portland – Requisitos, Rio de Janeiro

  24. Associação Brasileira de Normas Tecnicas (ABNT). NBR 9778 -Argamassa e concreto endurecidos - Determinação da absorção de água por imersão - Índice de vazios e massa específica, Rio de Janeiro, 2009.

  25. Wei J, Gencturk B. Hydration of ternary Portland cement blends containing metakaolin and sodium bentonite. Ce Concr Res. 2019;123:105772. https://doi.org/10.1016/j.cemconres.2019.05.017.

    Article  CAS  Google Scholar 

  26. Lawrence P, Cyr M, Ringot E. Mineral admixtures in mortars: Effect of inert materials on short-term hydration. Cem Concr Res. 2003;33:1939–47. https://doi.org/10.1016/S0008-8846(03)00183-2.

    Article  CAS  Google Scholar 

  27. Rocha CAA, Cordeiro GC, Toledo Filho RD. Influence of stone cutting waste and ground waste clay brick on the hydration and packing density of cement pastes. Rev IBRACON Estruturas e Mater. 2013;6:661–80. https://doi.org/10.1590/s1983-41952013000400009.

    Article  Google Scholar 

  28. Siddique R, Klaus J. Influence of metakaolin on the properties of mortar and concrete: a review. Appl Clay Sci. 2009;43(3–4):392–400. https://doi.org/10.1016/j.clay.2008.11.007.

    Article  CAS  Google Scholar 

  29. Mun KJ, Hyoung WK, Lee CW, So SY, Soh YS. Basic properties of non-sintering cement using phosphogypsum and waste lime as activator. Constr Build Mater. 2007;21(6):1342–50. https://doi.org/10.1016/j.conbuildmat.2005.12.022.

    Article  Google Scholar 

  30. Liu S, Ouyang J, Ren J. Mechanism of calcination modification of phosphogypsum and its effect on the hydration properties of phosphogypsum-based supersulfated cement. Constr Build Mater. 2020;243:118226. https://doi.org/10.1016/j.conbuildmat.2020.118226.

    Article  CAS  Google Scholar 

  31. Khatib JM, Clay RM. Absorption characteristics of metakaolin concrete. Cem Concr Res. 2004;34:19–29. https://doi.org/10.1016/S0008-8846(03)00188-1.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Central de Análises of the Federal Technological University of Paraná (UTFPR) by its infrastructure support for the development of this research.

Funding

The authors wish to thank the CAPES (Coordination for the Improvement of Higher Education Personnel) and CNPq (National Council for Scientific and Technological Development), process 424896 / 2018–4, in Brazil for their support.

Author information

Authors and Affiliations

Authors

Contributions

SP contributed to investigation, writing—original draft. CAL contributed to conceptualization, methodology, writing—review and editing, supervision, funding acquisition. FP contributed to review & editing.

Corresponding author

Correspondence to C. Angulski da Luz.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimenta, S., Angulski da Luz, C. & Pelisser, F. The use of metakaolin as a source of alumina in supersulfated in cements order to increase the formation of ettringite. J Therm Anal Calorim 148, 3301–3309 (2023). https://doi.org/10.1007/s10973-023-12005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12005-7

Keywords

Navigation