Skip to main content
Log in

Effect of surface modification and substrate material on flow and heat transfer characteristics in microchannel heat sink

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The conjugate effect is significant when the area of substrate perpendicular to the coolant flow direction is comparable to channel cross-sectional area. The effects of conjugate heat transfer have been studied for different materials and various bottom substrate thicknesses. Three-dimensional rectangular microchannel with waviness at selective location has been studied numerically. The working fluid is water, and the study has been conducted for the range of Re, 100 ≤ Re ≤ 1000. The significance of wall thickness and materials with different thermal conductivity while applying constant heat flux boundary condition has been analyzed. The bottom wall thickness is varied from 0.5 to 2 Hch for each material while side wall thickness is maintained constant. The effect of surface modification on the flow characteristics is carefully studied by allowing fully developed flow at the channel entry. ICEM CFD tool is used for generating non-uniform mesh. Three-dimensional numerical simulations are carried out using finite volume method-based solver ANSYS Fluent 19 and the conservation equations are solved using second-order upwind scheme. Present numerical results of base case with plane wall are validated using published experimental results. The larger convective area and Dean vortices help the heat transfer enhancement. The conjugate heat transfer effect is analyzed through conduction thermal resistance and overall thermal resistance variation. The copper substrate material with 0.5 Hch thickness maintains uniform temperature distribution in the bottom wall. The average heat transfer coefficient values decrease when the substrate wall thickness increases except at very low Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A b :

Bottom wall surface area (mm2)

A h :

Convective heated surface area (mm2)

C f :

Skin-friction coefficient (–)

C p :

Specific heat (Jkg1 K1)

D h :

Hydraulic diameter (mm)

f :

Fanning friction factor (–)

H ch :

Height of the channel (mm)

h :

Heat transfer coefficient (Wm2 K1)

k f :

Thermal conductivity of fluid (Wm1 K1)

k s :

Thermal conductivity of solid (Wm1 K1)

L ch :

Length of the channel (mm)

\(\dot{m}\) :

Mass flow rate (kgs1)

n :

Coordinate normal to the wall (–)

Nu:

Nusselt number (–)

P wet :

Wetted perimeter (mm)

Q :

Heat transfer rate (W)

q :

Heat flux (Wm2)

Re:

Reynolds number (–)

T in :

Inlet temperature (K)

T :

Temperature (K)

t w :

Base wall thickness (mm)

V ch :

Channel velocity (ms1)

W ch :

Width of the channel (mm)

UDF:

User defined function

µ :

Fluid dynamic viscosity (Nsm2)

ΔP :

Total channel pressure drop (Nm2)

ρ :

Density (kgm3)

τ w :

Wall shear stress (Nm2)

References

  1. PastUkhov VG, Maidanik YF, Vershinin CV, Korukov MA. Miniature loop heat pipes for electronics cooling. Appl Therm Eng. 2003;23(9):1125–35.

    Article  Google Scholar 

  2. Pavlova A, Amitay M. Electronic cooling using synthetic jet impingement. ASME J Heat Transf. 2006;128(9):897–907.

    Article  Google Scholar 

  3. Malý M, Moita AS, Jedelsky J, Ribeiro AP, Moreira AL. Effect of nanoparticles concentration on the characteristics of nanofluid sprays for cooling applications. J Therm Anal Calorim. 2019;135(6):3375–86.

    Article  Google Scholar 

  4. Kandlikar SG, Grande WJ. Evolution of microchannel flow passages—thermohydraulic performance and fabrication technology. Heat Transf Eng. 2003;24(1):3–17.

    Article  CAS  Google Scholar 

  5. Saenen T, Baelmans M. Numerical model of a two-phase microchannel heat sink electronics cooling system. Int J Therm Sci. 2012;59:214–23.

    Article  Google Scholar 

  6. Tuckerman DB, Pease RF. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981;2(5):126–9.

    Article  Google Scholar 

  7. Lee PS, Garimella SV, Liu D. Investigation of heat transfer in rectangular microchannels. Int J Heat Mass Transf. 2005;48(9):1688–704.

    Article  CAS  Google Scholar 

  8. Gunnasegaran P, Mohammed HA, Shuaib NH, Saidur R. The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes. Int Commun Heat Mass Transf. 2010;37(8):1078–86.

    Article  Google Scholar 

  9. Chen Y, Zhang C, Shi M, Wu J. Three-dimensional numerical simulation of heat and fluid flow in noncircular microchannel heat sinks. Int Commun Heat Mass Transf. 2009;36(9):917–20.

    Article  CAS  Google Scholar 

  10. Xia GD, Jiang J, Wang J, Zhai YL, Ma DD. Effects of different geometric structures on fluid flow and heat transfer performance in microchannel heat sinks. Int J Heat Mass Transf. 2015;80:439–47.

    Article  Google Scholar 

  11. Nonino C, Savino S, Del Giudice S, Mansutti L. Conjugate forced convection and heat conduction in circular microchannels. Int J Heat Fluid Flow. 2009;30(5):823–30.

    Article  Google Scholar 

  12. Koşar A. Effect of substrate thickness and material on heat transfer in microchannel heat sinks. Int J Therm Sci. 2010;49(4):635–42.

    Article  Google Scholar 

  13. Biswal L, Chakraborty S, Som SK. Design and optimization of single-phase liquid cooled microchannel heat sink. IEEE Trans Compon Packag Technol. 2009;32(4):876–86.

    Article  Google Scholar 

  14. Mohammed HA, Gunnasegaran P, Shuaib NH. Influence of various base nanofluids and substrate materials on heat transfer in trapezoidal microchannel heat sinks. Int Commun Heat Mass Transf. 2011;38(2):194–201.

    Article  CAS  Google Scholar 

  15. Hung TC, Yan WM, Li WP. Analysis of heat transfer characteristics of double-layered microchannel heat sink. Int J Heat Mass Transf. 2012;55(11–12):3090–9.

    Article  Google Scholar 

  16. Adewumi OO, Bello-Ochende T, Meyer JP. Numerical investigation into the thermal performance of single microchannels with varying axial length and different shapes of micro pin-fin inserts. Heat Transf Eng. 2017;38(13):1157–70.

    Article  CAS  Google Scholar 

  17. Das SG, Bhattacharyya S, Chattopadhyay H, Benim AC. Transport phenomenon of simultaneously developing flow and heat transfer in twisted sinusoidal wavy microchannel under pulsating inlet flow condition. Heat Transf Eng. 2021;43(3–5):410–22.

    Google Scholar 

  18. Boland S, Majidi S. Thermal improvement in double-layered microchannel heat sink with incorporating wavy porous fins. Heat Transf Eng. 2021;10:1–9.

    Google Scholar 

  19. Lan J, Xie Y, Zhang D. Flow and heat transfer in microchannels with dimples and protrusions. J Heat Transf. 2012;134(2):021901.

    Article  Google Scholar 

  20. Ghani IA, Kamaruzaman N, Sidik NA. Heat transfer augmentation in a microchannel heat sink with sinusoidal cavities and rectangular ribs. Int J Heat Mass Transf. 2017;108:1969–81.

    Article  Google Scholar 

  21. Feng Z, Luo X, Guo F, Li H, Zhang J. Numerical investigation on laminar flow and heat transfer in rectangular microchannel heat sink with wire coil inserts. Appl Therm Eng. 2017;116:597–609.

    Article  Google Scholar 

  22. Sui Y, Teo CJ, Lee PS, Chew YT, Shu C. Fluid flow and heat transfer in wavy microchannels. Int J Heat Mass Transf. 2010;53(13–14):2760–72.

    Article  CAS  Google Scholar 

  23. Lin L, Zhao J, Lu G, Wang XD, Yan WM. Heat transfer enhancement in microchannel heat sink by wavy channel with changing wavelength/amplitude. Int J Therm Sci. 2017;118:423–34.

    Article  Google Scholar 

  24. Wan Z, Lin Q, Wang X, Tang Y. Flow characteristics and heat transfer performance of half-corrugated microchannels. Appl Therm Eng. 2017;123:1140–51.

    Article  Google Scholar 

  25. Yuan D, Zhou W, Fu T, Liu C. Experimental and numerical investigation of heat and mass transfer in non-uniform wavy microchannels. Int J Therm Sci. 2020;152:106320.

    Article  Google Scholar 

  26. Sathish Kumar D, Jayavel S. Microchannel with waviness at selective locations for liquid cooling of microelectromechanical devices. J Appl Fluid Mech. 2021;14(3):935–48.

    Google Scholar 

  27. Bazdar H, Toghraie D, Pourfattah F, Akbari OA, Nguyen HM, Asadi A. Numerical investigation of turbulent flow and heat transfer of nanofluid inside a wavy microchannel with different wavelengths. J Therm Anal Calorim. 2020;139(3):2365–80.

    Article  CAS  Google Scholar 

  28. Patil PM, Kulkarni M, Tonannavar JR. Influence of applied magnetic field on nonlinear mixed convective nanoliquid flow past a permeable rough cone. Indian J Phys. 2022;96(5):1453–64.

    Article  CAS  Google Scholar 

  29. Patil PM, Benawadi S, Muttannavar VT. Mixed Bioconvective Flow of Williamson Nanofluid Over a Rough Vertical Cone. Arab J Sci Eng. 2022. https://doi.org/10.1007/s13369-022-07048-1.

    Article  Google Scholar 

  30. Patil PM, Shankar HF, Hiremath PS, Momoniat E. Nonlinear mixed convective nanofluid flow about a rough sphere with the diffusion of liquid hydrogen. Alex Eng J. 2021;60(1):1043–53.

    Article  Google Scholar 

  31. Patil PM, Shashikant A, Hiremath PS, Momoniat E. Influence of surface roughness on multidiffusive mixed convective nanofluid flow. Phys Scr. 2019;94(5):055201.

    Article  CAS  Google Scholar 

  32. Rostami J, Abbassi A, Saffar-Avval M. Optimization of conjugate heat transfer in wavy walls microchannels. Appl Therm Eng. 2015;82:318–28.

    Article  CAS  Google Scholar 

  33. Sathish Kumar D, Jayavel S. Numerical analysis of smooth and wavy wall microchannel heat sink for electronic cooling applications. In: Recent advances in computational and experimental mechanics. Springer; 2022. p. 299–309.

    Google Scholar 

  34. Yousefi E, Nazif HR, Najafi Khaboshan H, Azarinia A. Non-uniform magnetic field effect on forced convection heat transfer of flattened tubes using two-phase mixture model. Heat Transf Eng. 2021;42(12):1041–58.

    Article  CAS  Google Scholar 

  35. White FM, Viscous Fluid Flow, McGraw-Hill International Editions, Mechanical Engineering Series; 1991.

  36. Bergman TL, Bergman TL, Incropera FP, Dewitt DP, Lavine AS. Fundamentals of heat and mass transfer. Wiley; 2011.

    Google Scholar 

  37. Dean WR. The streamline motion of fluid in a curved pipe. Phil Mag. 1928;5:673–93.

    Article  Google Scholar 

  38. Bejan A. Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J Appl Phys. 1996;79(3):1191–218.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sathish Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D.S., Jayavel, S. Effect of surface modification and substrate material on flow and heat transfer characteristics in microchannel heat sink. J Therm Anal Calorim 148, 2831–2843 (2023). https://doi.org/10.1007/s10973-022-11920-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11920-5

Keywords

Navigation