Skip to main content
Log in

Effects of various inlet/outlet positions and header forms on flow distribution and thermal performance in microchannel heat sink

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Three-dimensional simulations are performed numerically to investigate the influence of inlet/outlet positions (Z-, I-, and C-type) and header forms (rectangular, symmetric trapezoidal, and triangular) on the flow and thermal performance in microchannel heat sinks. The conjugated heat transfer model is solved based on finite element method. A good agreement is found between the numerical results and theoretical data. A detailed analysis of flow and pressure distributions is proposed to explain the flow or heat transfer performance of different geometric structures. Results indicate that the performance of I-type with a rectangular header in terms of flow velocity uniformity and heat transfer is better than others under the same pumping power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

c p :

Special heat capacity kJ/(kg K)

f app :

Friction factor

k f :

Thermal conductivity of fluid W/(m K)

k s :

Thermal conductivity of solid W/(m K)

Nu :

Nusselt number

\(\Delta {\text{p}}\) :

Pressure drop Pa

Pr :

Prandtl number

q in :

Mass flow rate kg/min

q w :

Heat flux W/m2

Re :

Reynolds number

R T :

Thermal resistance K/W

T :

Temperature °C

ρ:

Density kg/m3

μ:

Dynamic viscosity kg/(m s)

Ω:

Pumping power W

V :

Velocity m/s

V q :

Volume flow rate m3/s Subscript

ave :

Average

in :

Inlet

max :

Maximum

min :

Minimum

out :

Outlet

STD :

Standard deviation

s :

Solid

f :

Fluid

References

  • Abubakar SB, Sidik NAC (2015) Numerical prediction of laminar nanofluid flow in rectangular microchannel heat sink. J Adv Res Fluid Mech Therm Sci 7:29–38

    Google Scholar 

  • Abubakar S, Nor Azwadi CS, Ahmad A (2016) The use of Fe3O4–H2O4 nanofluid for heat transfer enhancement in rectangular microchannel heatsink. J Adv Res Mater Sci 23:15–24

    Google Scholar 

  • Chai L, Xia G, Wang L et al (2013) Heat transfer enhancement in microchannel heat sinks with periodic expansion–constriction cross-sections. J Int J Heat Mass Transf 62(1):741–751

    Article  Google Scholar 

  • Chang SW, Lees AW (2010) Endwall heat transfer and pressure drop in scale-roughened pin-fin channels. J. Int J Therm Sci 49(4):702–713

    Article  Google Scholar 

  • Chein R, Chen J (2009) Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance. J. Int J Therm Sci 48(8):1627–1638

    Article  Google Scholar 

  • Choi SH, Shin S, Cho YI (1993a) The effects of the Reynolds number and width ratio on the flow distribution in manifolds of liquid cooling modules for electronic packaging. J Int Commun Heat Mass Transf 20(5):607–617

    Article  Google Scholar 

  • Choi SH, Shin S, Cho YI (1993b) The effect of area ratio on the flow distribution in liquid cooling module manifolds for electronic packaging. J Int Commun Heat Mass Transf 20(2):221–234

    Article  Google Scholar 

  • Dong L, Jiang B, Minghou Liu et al (2012) Effect of inlet/outlet types on the flow distribution and heat transfer in mini-channels. J Chin J Lasers 39(10):1003005–1003502

    Article  Google Scholar 

  • Elperin T, Rudin G (2016) Thermal stresses in a coating–substrate assembly caused by internal heat source. J Therm Stress 39(1):90–102

    Article  Google Scholar 

  • Foong AJL, Ramesh N, Chandratilleke TT (2009) Laminar convective heat transfer in a microchannel with internal longitudinal fins. J. Int J Therm Sci 48(10):1908–1913

    Article  Google Scholar 

  • Ghani IA, Kamaruzaman N, Sidik NAC (2017a) Heat transfer augmentation in a microchannel heat sink with sinusoidal cavities and rectangular ribs. J Int J Heat Mass Transf 108:1969–1981

    Article  Google Scholar 

  • Ghani IA, Sidik NAC, Mamat R et al (2017b) Heat transfer enhancement in microchannel heat sink using hybrid technique of ribs and secondary channels [J]. Int J Heat Mass Transf 114:640–655

    Article  Google Scholar 

  • Guo J, Xu M, Cheng L (2011) Second law analysis of curved rectangular channels. J. Int J Therm Sci 50(5):760–768

    Article  Google Scholar 

  • Hong F, Cheng P (2009) Three dimensional numerical analyses and optimization of offset strip-fin microchannel heat sinks. J Int Commun Heat Mass Transf 36(7):651–656

    Article  Google Scholar 

  • Kumaran RM, Kumaraguruparan G, Sornakumar T (2013) Experimental and numerical studies of header design and inlet/outlet configurations on flow mal-distribution in parallel micro-channels. J Appl Therm Eng 58(s 1–2):205–216

    Article  Google Scholar 

  • Lee PS, Garimella SV (2006) Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios [J]. Int J Heat Mass Transf 49(17):3060–3067

    Article  MATH  Google Scholar 

  • Lu MC, Wang CC (2006) Effect of the inlet location on the performance of parallel-channel cold-plate. J IEEE Trans Compon Packag Technol 29(1):30–38

    Article  Google Scholar 

  • Noh NM, Fazeli A, Sidik NAC (2014) Numerical simulation of nanofluids for cooling efficiency in microchannel heat sink. J Adv Res Fluid Mech Therm Sci 4:13–23

    Google Scholar 

  • Peles Y, Koşar A, Mishra C et al (2005) Forced convective heat transfer across a pin fin micro heat sink. J Int J Heat Mass Transf 48(17):3615–3627

    Article  MATH  Google Scholar 

  • Sidik NAC, Muhamad MNAW, Wan MAAJ et al (2017) An overview of passive techniques for heat transfer augmentation in microchannel heat sink [J]. Int Commun Heat Mass Transf 88:74–83

    Article  Google Scholar 

  • Steinke ME, Kandlikar SG (2006) Single-phase liquid friction factors in microchannels [J]. Int J Therm Sci 45(11):1073–1083

    Article  Google Scholar 

  • Suhir Ephraim (2013) Thermal stress failures in electronics and photonics: physics, modeling, prevention. J Therm Stress 36(6):537–563

    Article  Google Scholar 

  • Tuckerman DB, Pease RFW (1981) High-performance heat sinking for VLSI. J IEEE Electron Device Lett 2(5):126–129

    Article  Google Scholar 

  • Xia GD, Jiang J, Wang J et al (2015) Effects of different geometric structures on fluid flow and heat transfer performance in microchannel heat sinks. J Int J Heat Mass Transf 80:439–447

    Article  Google Scholar 

  • Xie G, Liu J, Liu Y, Sunden B, Zhang W (2013) Comparative study of thermal performance of longitudinal and transversal-wavy microchannel heat sinks for electronic cooling. J Electron Packag 135:021008

    Article  Google Scholar 

  • Xu JL, Gan YH, Zhang DC et al (2005) Microscale heat transfer enhancement using thermal boundary layer redeveloping concept. J Int J Heat Mass Transf 48(9):1662–1674

    Article  Google Scholar 

  • Xu J, Song Y, Zhang W et al (2008) Numerical simulations of interrupted and conventional microchannel heat sinks. J Int J Heat Mass Transf 51(25):5906–5917

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The project was financially supported by the Scientific Research Project of Beijing Educational Committee (Grant no. 004000546315527) and Scientific Research Project of Beijing Advanced Innovation Center for Future Internet Technology. The authors are grateful for the support of these sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Zhao, Y., Diao, Y. et al. Effects of various inlet/outlet positions and header forms on flow distribution and thermal performance in microchannel heat sink. Microsyst Technol 24, 2485–2497 (2018). https://doi.org/10.1007/s00542-017-3688-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3688-y

Navigation