Skip to main content
Log in

Effect of nanoparticles concentration on the characteristics of nanofluid sprays for cooling applications

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study addresses the effect of nanofluid synthesis on the rheological properties of the resulting fluid and their consequent effect on the characteristics (size and velocity distribution of droplets, spray cone angle, etc.) of the sprayed nanofluids. The results are discussed in the light of how the spray characteristics affect the use of the resulting nanofluid spray for cooling purposes. Nanoparticles of alumina (Al2O3) and zinc oxide (ZnO) are mixed in water-based solutions, for concentrations varying between 0.5% and 2 mass% for alumina and between 0.01% and 0.1 mass% for the zinc oxide particles. FeCl2·4H2O (0.1 mass%) was also used to infer on the effect of the nature (material) of the particles in the physicochemical properties of the resulting solutions. Among the various surfactants tested, citric acid (0.15%) was chosen for the final working mixtures, as it assured a stable behaviour of the solutions prepared during the entire study. The nanoparticles were characterized in detail, and the physicochemical properties of the fluid were measured before and after atomization, to evaluate any possible particle loss in the liquid feeding system or retention in the atomizer. The nanofluids were sprayed using a pressure-swirl atomizer at 0.5 MPa injection pressure. Droplet size and velocity in the spray were probed using phase Doppler anemometry. For the range of experimental conditions covered here, the results show that liquid viscosity is an important parameter in predetermining the spray characteristics of nanofluids, as it affects the primary liquid breakup. Despite this, only a mild increase is observed in the nanofluids viscosity, mainly for higher concentrations of alumina, which was not sufficient to significantly affect the spray characteristics, except for a small decrease in the spray cone angle and the size of the atomized droplets. Hence, for cooling purposes, the atomization mechanisms are not compromised by the addition of the nanoparticles and their using is beneficial, as they enhance the thermal properties without a significant deterioration of other fluid properties such as viscosity and spray characteristics. Present spray characteristics promote liquid adhesion to the cooling surfaces and droplet size and velocity are kept within a range that is appropriate for spray cooling, following the literature recommendations and our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

SCA:

Spray cone angle (°)

SPAN:

Relative span (–)

D 20 :

Surface mean diameter (μm)

D 30 :

Volume mean diameter (μm)

D 32 :

Sauter mean diameter (μm)

D v0.1 :

10% volume diameter (μm)

D v0.5 :

50% volume diameter (μm)

D v0.9 :

90% volume diameter (μm)

f :

Data rate (Hz)

ID32 :

Integral Sauter mean diameter (μm)

r :

Radial distance (mm)

Re :

Reynolds number (–)

U :

Axial velocity component (m s−1)

We :

Weber number (–)

w :

Liquid velocity at the exit orifice (m s−1)

Z :

Axial distance (mm)

µ l :

Liquid dynamic viscosity (kg m−1 s−1)

ρ l :

Liquid density (kg m−3)

σ l :

Liquid/gas surface tension (kg s−2)

References

  1. Kim J. Spray cooling heat transfer: the state of the art. Int J Heat Fluid Flow. 2007;28(4):753–67.

    Article  Google Scholar 

  2. Moreira ALN, Moita AS, Panão MR. Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful? Prog Energy Combust Sci. 2010;36:554–80.

    Article  CAS  Google Scholar 

  3. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57:582–94.

    Article  CAS  Google Scholar 

  4. Bostanci H, Daniel R, John K, Louis C. Spray cooling with ammonia on microstructured surfaces: performance enhancement and hysteresis effect. J Heat Transf. 2009;131:071401.

    Article  CAS  Google Scholar 

  5. Duursma G, Sefiane K, Kennedy A. Experimental studies of nanofluid droplets in spray cooling. Heat Transf Eng. 2017;30(13):1108–20.

    Article  CAS  Google Scholar 

  6. Das SK, Choi US, Yu W, Pradeep Y. Nanofluids: science and technology. New York: Wiley; 2008.

    Google Scholar 

  7. Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu L-W, Alvarado JL, Bang IC, Bishnoi SW, Bonetti M, Botz F, Cecere A, Chang Y, Chen G, Chen H, Chung SJ, Chyu MK, Das SK, Di Paola R, Ding Y, Dubois F, Dzido G, Eapen J, Escher W, Funfschilling D, Galand Q, Gao J, Gharagozloo PE, Goodson KE, Gutierrez JG, Hong H, Horton M, Hwang KS, Iorio CS, Jang SP, Jarzebski AB, Jiang Y, Jin L, Kabelac S, Kamath A, Kedzierski MA, Kieng GL, Kim C, Kim J-H, Kim S, Lee SH, Leong KC, Manna I, Michel B, Ni R, Patel HE, Philip J, Poulikakos D, Reynaud C, Savino R, Singh PK, Song P, Sundararajan T, Timofeeva E, Tritcak T, Turanov AN, Van Vaerenbergh S, Wen D, Witharana S, Yang C, Yeh W-H, Zhao X-Z, Zhou S-Q. A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. 2009;106:094312.

    Article  CAS  Google Scholar 

  8. Chen R-H, Phuoc TX, Martello D. Effects of nanoparticles on nanofluid droplets evaporation. Int J Heat Mass Transf. 2010;53:3677–82.

    Article  CAS  Google Scholar 

  9. Mehrali M, Sadeghinezhad E, Rashidi MM, Akhiani AR, Latibari ST, Mehrali M, Metselaar HSC. Experimental and numerical investigation of the effective electrical conductivity of nitrogen-doped graphene nanofluids. J. Nanoparticle Res. 2015;17(6):267.

    Article  Google Scholar 

  10. Hsieh S-S, Liu H-H, Yeh Y-F. Nanofluids spray heat transfer enhancement. Int J Heat Mass Transf. 2016;94:104–18.

    Article  CAS  Google Scholar 

  11. Esfe MH, Saedodin S, Yan W-M, Afrand M, Sina N. Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles. J Therm Anal Calorim. 2016;124:455–60.

    Article  CAS  Google Scholar 

  12. Selvam C, Lal DM, Harish S. Thermal conductivity and specific heat capacity of water–ethylene glycol mixture-based nanofluids with graphene nanoplatelets. J Therm Anal Calorim. 2017;129:947–55.

    Article  CAS  Google Scholar 

  13. Zyla G. Viscosity and thermal conductivity of MgO–EG nanofluids: experimental results and theoretical models predictions. J Therm Anal Calorim. 2017;129:171–80.

    Article  CAS  Google Scholar 

  14. Kakaç S, Pramuanjaroenkij AA. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52:3187–96.

    Article  CAS  Google Scholar 

  15. Nield DA, Bejan A. Convection in Porous Media. 4th ed. New York: Springer; 2013.

    Book  Google Scholar 

  16. Kherbeet ASh, Mohammed HA, Salman BH, Ahmed HE, Alawi OA, Rashidi MM. Experimental study of nanofluid flow and heat transfer over microscale backward- and forward-facing steps. Exp Therm Fluid Sci. 2015;65:13–21.

    Article  CAS  Google Scholar 

  17. Shenoy A, Sheremet MA, Pop I. Flow and heat transfer past wavy surfaces: viscous fluids, porous media and nanofluids. New York: Taylor & Francis Group; 2016.

    Book  Google Scholar 

  18. Sheikholeslami M, Ganji DD. Nanofluid convective heat transfer using semi analytical and numerical approaches: a review. J. Taiwan Inst. Chem. Eng. 2016;65:43–77.

    Article  CAS  Google Scholar 

  19. Hosseinzadeh M, Heris SZ, Beheshti A, Shanbedi M. Convective heat transfer and friction factor of aqueous Fe3O4 nanofluid flow under laminar regime: an experimental investigation. J Therm Anal Calorim. 2016;124:827–38.

    Article  CAS  Google Scholar 

  20. Raei B, Shahraki F, Jamialahmadi M, Peyghambarzade SM. Experimental study on the heat transfer and flow properties of c-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2017;127:2561–75.

    Article  CAS  Google Scholar 

  21. Akbari OA, Afrouzi HH, Marzban A, Toghraie D, Malekzade H, Arabpour A. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim. 2017;129:1911–22.

    Article  CAS  Google Scholar 

  22. Sharma AK, Tiwari AK, Dixit AR. Rheological behaviour of nanofluids: a review. Renew Sustain Energy Rev. 2016;53:779–91.

    Article  CAS  Google Scholar 

  23. Vafaei S, Borca-Tasciuc T, Podowski MZ, Purkayastha A, Ramanath G, Ajayan PM. Effect of nanoparticles on sessile droplet contact angle. Nanotechnology. 2006;17:2523–7.

    Article  CAS  PubMed  Google Scholar 

  24. Wasan DT, Nikolov AD. Spreading of nanofluids on solids. Nature. 2003;423:156.

    Article  CAS  PubMed  Google Scholar 

  25. Chinnam J, Das DK, Vajjha RS, Satti JR. Measurements of the surface tension of nanofluids and development of a new correlation. Int J Therm Sci. 2015;98:68–80.

    Article  CAS  Google Scholar 

  26. Jang SP, Lee J-H, Hwang KS, Choi SUS. Particle concentration and tube size dependence of viscosities of water nanofluids flowing through micro- and minitubes. Appl Phys Lett. 2007;91:243112.

    Article  CAS  Google Scholar 

  27. Ayela F, Chevalier J. Comment on “Particle concentration and tube size dependence of viscosities of water nanofluids flowing through micro- and minitubes. [Appl. Phys. Lett. 91, 243112 (2007)]”. Appl Phys Lett. 2009;94:066101.

    Article  CAS  Google Scholar 

  28. Singh PK, Harikrishna PV, Sundararajan T, Das SK. Experimental and numerical investigation into the hydrodynamics of nanofluids in microchannels. Exp Therm Fluid Sci. 2012;42:174–86.

    Article  CAS  Google Scholar 

  29. Lefebvre AH, McDonell VG. Atomization and sprays. 2nd ed. London: Taylor & Francis; 2017.

    Book  Google Scholar 

  30. Kannaiyan K, Sadr R. The effects of alumina nanoparticles as fuel additives on the spray characteristics of gas-to-liquid jet fuels. Exp Thermal Fluid Sci. 2017;87:93–103.

    Article  CAS  Google Scholar 

  31. Teodori E, Moita AS, Pontes P, Moura M, Moreira ALN, Bai Y, Li X, Liu Y. Application of bioinspired superhydrophobic surfaces in two-phase heat transfer experiments. J Bionic Eng. 2017;14(3):506–19.

    Article  Google Scholar 

  32. Panão MRO, Moreira ALN, Durão DFG. Thermal-fluid assessment of multijet atomization for spray cooling applications. Energy. 2011;36:2302–11.

    Article  CAS  Google Scholar 

  33. Panão MRO, Moreira ALN, Durão DFG. Transient analysis of intermittent multijet sprays. Exp Fluids. 2012;53:105–19.

    Article  CAS  Google Scholar 

  34. Pastrana-Martínez LM, Pereira N, Lima R, Faria JL, Gomes HT, Silva AMT. Degradation of diphenhydramine by photo-Fenton using magnetically recoverable iron oxide nanoparticles as catalyst. Chem Eng J. 2015;26:45–52.

    Article  CAS  Google Scholar 

  35. Pereira P, Moita AS, Monteiro G, Prazeres DMF. Characterization of English weed leaves and biomimetic replicas. J Bionic Eng. 2014;11(3):346–59.

    Article  Google Scholar 

  36. Moita AS, Teodori E, Moreira ALN. Enhancement of pool boiling heat transfer by surface micro-structuring. J Phys Conf Ser. 2012;395:012175.

    Article  Google Scholar 

  37. Moita AS, Laurência C, Ramos JA, Prazeres DMF, Moreira ALN. Dynamics of droplets of biological fluids on smooth superhydrophobic surfaces under electrostatic actuation. J Bionic Eng. 2016;13(2):220–34.

    Article  Google Scholar 

  38. Jedelsky J, Jicha M. Energy considerations in spraying process of a spill-return pressure-swirl atomizer. Appl Energy. 2014;132:485–95.

    Article  Google Scholar 

  39. Manasse U, Wriedt T, Bauckhage K. Phase-Doppler sizing of optically absorbing liquid droplets: comparison between Mie theory and experiment. Part Spray Syst Charact. 1992;9(1–4):176–85.

    Article  CAS  Google Scholar 

  40. Albrecht H-E, Borys M, Damaschke N, Tropea C. Laser Doppler and phase Doppler measurement techniques. Berlin: Springer; 2003.

    Book  Google Scholar 

  41. Santolaya JL, García JA, Calvo E, Cerecedo LM. Effects of droplet collision phenomena on the development of pressure swirl sprays Int. J. Multiph. Flow. 2013;56:160–71.

    Article  CAS  Google Scholar 

  42. Jedelsky J, Maly M, del Corral MO, Wigley G, Janackova L, Jicha M. Air–liquid interactions in a pressure-swirl spray. Int J Heat Mass Transf. 2018;121:788–804.

    Article  CAS  Google Scholar 

  43. Maly M, Janackova L, Jedelsky J, Jicha M. Impact of alternative fuel rheology on spraying process of small pressure-swirl atomizer. AIP Conf Proc. 2016;1745:020031.

    Article  CAS  Google Scholar 

  44. Lefebvre AH. The prediction of Sauter mean diameter for simplex pressure-swirl atomisers. At Spray Technol. 1987;3(1):37–51.

    CAS  Google Scholar 

  45. Yule AJ, Dunkley JJ. Atomization of melts for powder production and spray deposition. Oxford: Clarendon Press; 1994.

    Google Scholar 

  46. Moita AS, Moreira ALN. Experimental study on fuel drop impacts onto rigid surfaces: morphological comparisons, disintegration limits and secondary atomization. Proc Combust Inst. 2007;31:2175–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the project No. 18-15839S funded by the Czech Science Foundation. The authors are also grateful to Fundação para a Ciência e Tecnologia (FCT) for partially financing the research under the framework of the project RECI/EMS-SIS/0147/2012 and for supporting M. Malý with a research fellowship, during his stage at IN+. A. S. Moita acknowledges FCT for financing her contract and exploratory research project through the recruitment programme FCT Investigator (IF 00810-2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Moita.

Additional information

The present article is based on the lecture presented at ESNf2017 conference in Lisbon - Portugal on 8–10 October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malý, M., Moita, A.S., Jedelsky, J. et al. Effect of nanoparticles concentration on the characteristics of nanofluid sprays for cooling applications. J Therm Anal Calorim 135, 3375–3386 (2019). https://doi.org/10.1007/s10973-018-7444-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7444-z

Keywords

Navigation