Skip to main content
Log in

Formation of nanocomposites on the basis of poly-1-vinyl-1,2,4-triazole during thermolysis of silver nitrate polymer salt

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

A Correction to this article was published on 03 March 2023

This article has been updated

Abstract

By thermal treatment of a polymer complex of silver nitrate based on poly-1-vinyl-1,2,4-triazole without the use of an additional reducing agent we have synthesized new insoluble polymer nanocomposites containing zero-valent Ag0 silver nanoparticles in the polymeric matrix. The received nanocomposites are paramagnetic with a spin concentration of about 1018 spin g−1 and have an average size of silver particles is 4–9 nm. The study of the formation of nanoparticles in the polymeric matrix was carried out by the method of electron paramagnetic resonance involving methods of synchronous thermal analysis. It was shown by monitoring the synthesis that the formation of a nanosystem is accompanied by the oxidation of the matrix and reduction of silver ions Ag+ and Ag2+. It was found that the formation of a nanocomposite was accompanied by structural changes in the polymer matrix, which can make a negligible contribution to the overall magnetism of the resulting nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 
Fig. 3
Fig. 4 
Fig. 5 
Fig. 6 
Fig. 7 
Fig. 8 
Fig. 9
Fig. 10
Fig. 11 

Similar content being viewed by others

Change history

References

  1. Gubin SP, Koksharov YA, Khomutov GB, Yurkov GY. Magnetic nanoparticles: Preparation, structure and properties. Russ Chem Rev. 2005;74:489–520.

    Article  CAS  Google Scholar 

  2. Pomogailo AD, Dzhardimalieva GI. Nanostructured materials preparation via condensation ways. Dordrecht: Science+Business Media; 2014.

    Book  Google Scholar 

  3. Deng Z, Yu H, Wang L, Zhai X, Chen Y, Vatsadze SZ. Construction of ferrocene-containing nanomaterials via self-assembly of ferrocenyl hyperbranched polyethylene. J Organomet Chem. 2016;821:48–53.

    Article  CAS  Google Scholar 

  4. Khutsishvili SS, Lesnichaya MV, Vakul’skaya TI, Dolmaa G, Aleksandrova GP, Rakevich AL, Sukhov BG. Humic-based bionanocomposites containing stable paramagnetic gold nanoparticles for prospective use in pharmaceuticals. Spectrosc Lett. 2018;51:169–73.

  5. Hanemann T, Szabo DV. Polymer-nanoparticle composites: From synthesis to modern applications. Materials. 2010;3:3468–517.

    Article  CAS  PubMed Central  Google Scholar 

  6. Samide A, Iacobescu GE, Tutunaru B, Iordache S. Silver nanoparticles/polyvinyl alcohol film: Studies of thermal characterization, AFM and corrosion protection by electrodeposition on 304L stainless steel. J Therm Anal Calorim. 2022;147:1041–51.

    Article  CAS  Google Scholar 

  7. Liu J, Yu H, Wang L, Deng Z, Vatsadze SZ. In-situ preparation of palladium nanoparticles loaded ferrocene based metal-organic framework and its application in oxidation of benzyl alcohol. J Mol Struct. 2019;1198: 126895.

    Article  CAS  Google Scholar 

  8. Khutsishvili SS, Vakul’skaya TI, Aleksandrova GP, Sukhov BG. Strong stabilization properties of humic substance matrixes for silver bionanocomposites. Micro Nano Lett. 2017;12:418–21.

  9. Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV. Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles. Int J Nanomed. 2014;9:1883–9.

  10. Prozorova GF, Kuznetsova NP, Shaulina LP, Bolgova YI, Trofimova OM, Emel’yanov AI, Pozdnyakov AS. Synthesis and sorption activity of novel cross-linked 1-vinyl-1,2,4-triazole–(trimethoxysilyl)methyl-2-methacrylate copolymers. J Organomet Chem. 2020;916: 121273.

    Article  CAS  Google Scholar 

  11. Wang Z, Tao Y, Wang Z, Yan J. Synthesis and characterization of poly(N-vinyl-1,2,3-triazole)s derived from monomers obtained by highly efficient Wolff’s cyclocondensation. Polym Chem. 2016;7:3172–8.

    Article  CAS  Google Scholar 

  12. Tikhonov NI, Khutsishvili SS, Larina LI, Pozdnyakov AS, Emel’yanov AI, Prozorova GF, Vashchenko AV, Vakul’skaya TI. Silver polymer complexes as precursors of nanocomposites based on polymers of 1-vinyl-1,2,4-triazole. J Mol Struct. 2019;1180:272–9.

  13. Shurygina IA, Prozorova GF, Trukhan IS, Korzhova SA, Fadeeva TV, Pozdnyakov AS, Dremina NN, Emel’yanov AI, Kuznetsova NP, Shurygin MG. Nontoxic silver/poly-1-vinyl-1,2,4-triazole nanocomposite materials with antibacterial activity. Nanomaterials. 2020;10:1477.

  14. Chen Q, Sai T, Fang Z, Guo Z. Thermal stability and oxygen resistance of polypropylene composites with fullerene/montmorillonite hybrid fillers. J Therm Anal Calorim. 2021;146:1383–92.

    Article  CAS  Google Scholar 

  15. Khutsishvili SS, Tikhonov NI, Pavlov DV, Vakul’skaya TI, Penzik MV, Kozlov AN, Lesnichaya MV, Aleksandrova GP, Sukhov BG. Gold- and silver-containing bionanocomposites based on humic substances extracted from coals: A thermal analysis study. J Therm Anal Calorim. 2019;137:1181–8.

  16. Liu H, Zhang H, Wang J, Wei J. Effect of temperature on the size of biosynthesized silver nanoparticle: Deep insight into microscopic kinetics analysis. Arab J Chem. 2020;13:1011–9.

    Article  CAS  Google Scholar 

  17. Yao Y, Chen F, Nie A, Lacey SD, Jacob RJ, Xu S, Huang Z, Fu K, Dai J, Salamanca-Riba L, Zachariah MR, Shahbazian-Yassar R, Hu L. In situ high temperature synthesis of single-component metallic nanoparticles. ACS Cent Sci. 2017;3:294–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhong G, Xu S, Chen C, Kline DJ, Giroux M, Pei Y, Jiao M, Liu D, Mi R, Xie H, Yang B, Wang C, Zachariah MR, Hu L. Synthesis of metal oxide nanoparticles by rapid, high-temperature 3D microwave heating. Adv Funct Mater. 2019;29:1904282.

    Article  CAS  Google Scholar 

  19. Yudanova LI, Logvinenko VA, Yudanov NF, Rudina NA, Ishchenko AV, Semyannikov PP, Sheludyakova LA, Alferova NI. Thermolysis of copper(II) salts of maleic acid. Synthesis of metal-polymer composites. Russ J Coord Chem. 2013;39:415–20.

  20. Yudanova LI, Logvinenko VA, Sheludyakova LA, Korol’kov IV, Ishchenko AV, Rudina NA. Regularities of thermolysis for the Fe(II), Co(II), and Ni(II) salts of maleic and ortho-phthalic acids with the formation of metal/polymer composites. Russ J Coord Chem. 2017;43:446–52.

  21. Ermakova TG, Tatarova LA, Kuznetsova NP. Vinylation of 1,2,4-triazole. Russ J Gen Chem. 1997;67:805–7.

    CAS  Google Scholar 

  22. Lopyrev VA, Tatarova LA, Vakul’skaya TI, Ermakova TG. Study of the mechanism of radical polymerization of 1-vinyl-1,2,4-triazole. Polym Sci Ser B. 1985;27:221–5.

  23. Becker H. Organikum. Berlin: VEB Deutscher Verlag der Wissenschaften; 1976.

    Google Scholar 

  24. Poole CP. Electron spin resonance: A comprehensive treatise on experimental techniques. 2nd ed. Dover: Dover Publications; 1997.

    Google Scholar 

  25. Barret CA, Massalsky TB. Structure of metals. New York: McGraw-Hill; 1966.

    Google Scholar 

  26. Pozdnyakov AS, Emel’yanov AI, Kuznetsova NP, Ermakova TG, Korzhova SA, Khutsishvili SS, Vakul’skaya TI, Prozorova GF. Synthesis and characterization of silver containing nanocomposites based on 1-vinyl-1,2,4-triazole and acrylonitrile copolymer. J Nanomater. 2019;2019:4895192.

  27. Ali M, Shames AI, Gangopadhyay S, Saha B, Meyerstein D. Silver(II) complexes of tetrazamacrocycles: studies on e.p.r. and electron transfer kinetics with thiosulfate ion. Transit Met Chem. 2004;29:463–70.

  28. Hallpern T, McKoskey SM, McMillan JA. Electron paramagnetic resonance of dipyridyl-coordinated Ag2+ (4d9). J Chem Phys. 1970;52:3526–9.

    Article  Google Scholar 

  29. Wang Y-P, Yeh C-T. Electron paramagnetic resonance study of the interactions of oxygen with Silver/Titania. J Chem Soc Faraday Trans. 1991;87:345–8.

    Article  CAS  Google Scholar 

  30. Kapel’nitskiĭ SV, Kushch LA. Spin resonance of conduction electrons and EPR of localized moments in a low-dimensional organic conductor [Pd(dddt)2]Ag1.5Br3.5. Phys Solid State. 2000;42:350–5.

  31. Po HN. Heterocyclic and macrocyclic amine complexes of silver(II) and silver(III). Coord Chem Rev. 1976;20:171–95.

    Article  CAS  Google Scholar 

  32. Murtha OP, Walton RA. Coordination complexes of silver(II). VIII. Synthesis and characterization of mixed-ligand complexes of the pyridine carboxylic acids and other nitrogen heterocyclic donor molecules. Inorg Chem. 1973;12:1278–82.

  33. Kester MO, Allred AL. Ligand-induced disproportionation of silver(I). J Am Chem Soc. 1972;94:7189.

    Article  Google Scholar 

  34. Marcus RA. Electron transfer reactions in chemistry. Theory and experiment (noble lecture). Angew Chem Int Ed. 1993;32:1111–21.

  35. Xue H, Bhowmik P, Schlick S. Direct detection of ionic clustering in telechelic ionomers by DSC and ESR. Macromolecules. 1993;26:3340–3.

    Article  CAS  Google Scholar 

  36. Khutsishvili SS, Vakul’skaya TI, Aleksandrova GP, Sukhov BG. Stabilized silver nanoparticles and clusters Agn of humic-based bioactive nanocomposites. J Clust Sci. 2017;28:3067–74.

  37. Moon HR, Kim JH, Suh MP. Redox-active porousorganic framework producing silver nanoparticles from AgI ions at room temperature. Angew Chem Int Ed. 2005;44:1261–5.

    Article  CAS  Google Scholar 

  38. Timoshenko VA, Shabatina TI, Morozov YuN, Sergeev GB. Complexation and chemical transformations in the ternary system silver-carbon tetrachloride-mesogenic cyanobiphenyl at low temperatures. J Struct Chem. 2006;47:145–50.

  39. Eichelbaum M, Rademann K, Hoell A, Tatchev DM, Weigel W, Stößer R, Pacchioni G. Photoluminiscence of atomic gold and silver particles in soda-lime silicate glasses. Nanotechnology. 2008;19: 135701.

    Article  PubMed  Google Scholar 

  40. Khutsishvili SS, Toidze P, Donadze M, Gabrichidze M, Makhaldiani N, Agladze T. Structural surface features of paramagnetic multifunctional nanohybrids based on silver oleic acid. J Clust Sci. 2021;32:1351–9.

    Article  CAS  Google Scholar 

  41. Blatter F, Blazey KW. Conduction electron spin resonance of silver in zeolite AgY. Z Physik D Atoms Mol Clust. 1991;18:427–9.

    Article  CAS  Google Scholar 

  42. Qu Z, Roduner E. In situ ESR study of gold supported on NaY zeolite. Asia-Pacific J Chem Eng. 2009;4:602–6.

    Article  CAS  Google Scholar 

  43. Kawabata A. Electronic properties of fine metallic particles. III. E.S.R. Absorption line shape. J Phys Soc Jpn. 1970;29:902–11.

  44. Claus P, Bruckner A, Mohr C, Hofmeister H. Supported gold nanoparticles from quantum dot to mesoscopic size scale: Effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups. J Am Chem Soc. 2000;122:11430–9.

    Article  CAS  Google Scholar 

  45. Michalik J, Brown D, Yu J-S, Danilczuk M, Kim JY, Kevan L. Conduction electron paramagnetic resonance of metal nanoparticles in AIMCM-41 aluminosilica mesoporous molecular sieves. Phys Chem Chem Phys. 2001;3:1705–8.

    Article  CAS  Google Scholar 

  46. Savateev A, Pronkin S, Epping JD, Willinger MG, Antonietti M, Dontsova D. Synthesis of an electronically modified carbon nitride from a processable semiconductor, 3-amino-1, 2, 4-triazole oligomer, via a topotactic-like phase transition. J Mater Chem A. 2017;5:8394–401.

    Article  CAS  Google Scholar 

  47. Lopyrev VA, Salaurov VN, Kurochkin VN, Tatarova LA, Ermakova TG. On the features of thermal destruction of poly-1-vinyl-1,2,4-triazole. Polym Sci Ser B. 1985;27:145.

    CAS  Google Scholar 

  48. Kauffman T. The arenology principle. Angew Chem Int Ed. 1971;10:743–4.

    Article  Google Scholar 

  49. Grassie N. Chemistry of high polymer degradation processes. New York: Interscience; 1956.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Center of Instrumental Analysis (R. Agladze Institute of Inorganic Chemistry and Electrochemistry, TSU (Tbilisi, Georgia)) and the Baikal Analytical Center of Collective Use SB RAS (A.E. Favorsky Irkutsk Institute of Chemistry SB RAS) for spectral and analytical measurements. Thermoanalytical studies were performed by M.V. Penzik and A.N. Kozlov and were carried out in the framework of the State Assignment Project (FWEU-2021-0005) of the Fundamental Research Program of the Russian Federation 2021–2030 using the resources of the High-Temperature Circuit Multi-Access Research Center (Melentiev Energy Systems Institute SB RAS), Ministry of Science and Higher Education of the Russian Federation (Project no 13.ЦКП.21.0038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spartak S. Khutsishvili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The figure captions of figures 2, 3 and 4 were interchanged by mistake. The figure captions were corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khutsishvili, S.S., Tikhonov, N.I., Kuznetsova, N.P. et al. Formation of nanocomposites on the basis of poly-1-vinyl-1,2,4-triazole during thermolysis of silver nitrate polymer salt. J Therm Anal Calorim 148, 2389–2397 (2023). https://doi.org/10.1007/s10973-022-11916-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11916-1

Keywords

Navigation