Skip to main content
Log in

Atomic-level AI topological indices as efficient descriptors for developing predictive QSPR models for flash points of acyclic alkanes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The atomic-level AI topological indices combined with the Xu topological index were utilized in the quantitative structure–property relationship (QSPR) study of the flash point (FP) temperatures of 92 acyclic alkanes. Modeling of the flash points by the multiple linear regression (MLR) resulted in a three-parameter model consisted of Xu, AI(–CH3) and AI (–CH2–) indices by which the maximum value of the relative percent deviation (RPD) for predicting the FP data was found to be 5.6%. The topological descriptors were subsequently utilized as inputs for an artificial neural network (ANN) to develop a more accurate model. The findings showed that using a 3-5-1 ANN, the RPD values does not exceed 4.0%. The relative importance of the topological indices to the flash points followed the order of AI (–CH3) > Xu > AI (–CH2–) suggesting both atomic groups and molecular bulkiness as the main factors influencing FP values of the studied compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Crowl DA, Louvar JF. Chemical process safety fundamentals with applications. Pearson Education Inc. 2011.

  2. Isac-Garćıa J, Dobado JA, Calvo-Flores FG, Martínez-Garćıa H, Experimental organic chemistry: laboratory manual. 1st ed. Academic Press; 2015.

  3. Vidal M, Rogers WJ, Holste JC, Mannan MS. A review of estimation methods for flash points and flammability limits. Process Saf Prog. 2004;23:47–55.

    Article  CAS  Google Scholar 

  4. Cote AE. Fire protection handbook. 19th ed. National fire protection association. Quincy: MA 2003.

  5. Stauffer E, Dolan JA, Newman R. Fire Debris Analysis. Academic press; 2008.

  6. NFPA30. Flammable and combustible liquids code. National Fire Protection Association. 2003.

  7. Honnet S, Seshadri K, Niemann U, Peters N. A surrogate fuel for kerosene. Proc Combust Inst. 2009;32:485–92.

    Article  CAS  Google Scholar 

  8. Katritzky AR, Petrukhin R, Jain R, Karelson M. QSPR analysis of flash points. J Chem Inf Comput Sci. 2001;41:1521–30.

    Article  CAS  PubMed  Google Scholar 

  9. Torabian E, Sobati MA. New methods for predicting the flash point of mixtures containing different alcohols. Process Saf Environ Prot. 2017;111:439–48.

    Article  CAS  Google Scholar 

  10. Santos SM, Nascimento DC, Costa MC, Neto AMB, Fregolente LV. Flash point prediction: Reviewing empirical models for hydrocarbons, petroleum fraction, biodiesel, and blends. Fuel. 2020;263: 116375.

    Article  CAS  Google Scholar 

  11. Roy K, Kar S, Das RN. A primer on QSAR/QSPR modeling fundamental concepts. Springer International Publishing; 2015.

  12. Roy K. Advances in QSAR modeling: Applications in pharmaceutical, chemical, food, agricultural and environmental sciences. Springer Cham; 2017.

  13. Xiao F, Peng G, Nie Ch, Wu Y, Dai Y. Quantum topological method studies on the thermodynamic properties of polychlorinated phenoxazines. J Mol Struct. 2014;1074:679–86.

    Article  CAS  Google Scholar 

  14. Atabati M, Emamalizadeh R. A Quantitative structure property relationship for prediction of flash point of alkanes using molecular connectivity indices. Chinese J Chem Eng. 2013;21:420–6.

    Article  CAS  Google Scholar 

  15. Mamy L, Patureau D, Barriuso E, Bedos C, Bessac F, Louchart X, Martin-Laurent F, Miege C, Benoit P. Prediction of the fate of organic compounds in the environment from their Molecular properties: a review. Crit Rev Environ Sci Technol. 2015;45:1277–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kier LB, Hall LH, Frazer JW. An index of electrotopological state for atoms in molecules. J Math Chem. 1991;7:229–41.

    Article  CAS  Google Scholar 

  17. Ren B. Novel atom-type AI indices for QSPR studies of alcohols. Comput Chem. 2002;26:223–35.

    Article  CAS  PubMed  Google Scholar 

  18. Wiener H. Structural determination of paraffin boiling points. J Am Chem Soc. 1947;69:17–20.

    Article  CAS  PubMed  Google Scholar 

  19. Balaban AT. Highly discriminating distance-based topological index. Chem Phys Lett. 1982;89:399–404.

    Article  CAS  Google Scholar 

  20. Ren B. A new topological index for QSPR of alkanes. J Chem Inf Comput Sci. 1999;39:139–43.

    Article  CAS  Google Scholar 

  21. Ren B, Chen G, Xu Y. Estimation of heat capacity of complex organic compounds by a novel topological index. J Chem Eng China. 1999;50:280–6 (in Chinese).

    CAS  Google Scholar 

  22. Ren B, Xu Y, Chen G. A novel topological index for QSPR/QSAR study of organic compounds. Acta Chim Sinica. 1999;57:563–71 (in Chinese).

    CAS  Google Scholar 

  23. Ren B. Novel atomic-level-based AI topological descriptors: Application to QSPR/QSAR modeling. J Chem Inf Comput Sci. 2002;42:858–68.

    Article  CAS  PubMed  Google Scholar 

  24. Ren B. Application of novel atom-type AI topological indices to QSPR studies of alkanes. Comput Chem. 2002;26:357–69.

    Article  CAS  PubMed  Google Scholar 

  25. Ren B. Application of novel atom-type AI topological indices in the structure-property correlations. J Mol Struct (THEOCHEM). 2002;586:137–48.

    Article  CAS  Google Scholar 

  26. Ren B. Atom-type-based AI topological descriptors: application in structure-boiling point correlations of oxo organic compounds. J Chem Inf Comput Sci. 2003;43:1121–31.

    Article  CAS  PubMed  Google Scholar 

  27. Ren B. Atomic-level-based AI topological descriptors for structure−property correlations. J Chem Inf Comput Sci. 2003;43:161–9.

    Article  CAS  PubMed  Google Scholar 

  28. Panneerselvam K, Antony MP, Srinivasan TG, Rao PRV. Estimation of normal boiling points of trialkyl phosphates using retention indices by gas chromatography. Thermochim Acta. 2010;511:107–11.

    Article  CAS  Google Scholar 

  29. Safa F, Yekta M. Quantitative structure–property relationship study of standard formation enthalpies of acyclic alkanes using atom-type-based AI topological indices. Arab J Chem. 2017;10:439–47.

    Article  CAS  Google Scholar 

  30. Osaghi B, Safa F. QSPR study on the boiling points of aliphatic esters using the atom-type-based AI topological indices. Rev Roum Chim. 2019;64:183–9.

    Article  Google Scholar 

  31. Safa F, Alizadeh Dakhel A, Shariati Sh. Predictive artificial neural network model for solvation enthalpy of organic compounds in N,N-dimethylformamide. Russ J Phys Chem A. 2019;93:2661–8.

    Article  Google Scholar 

  32. Safa F. Atomic-level topological indices for prediction of the infinite dilution activity coefficients of oxo compounds in water. J Sol Chem. 2020;49:222–38.

    Article  CAS  Google Scholar 

  33. Safdel F, Safa F. Atom-type-based AI topological indices for artificial neural network modeling of retention indices of monomethylalkanes. J Chromatogr Sci. 2019;57:1–8.

    Article  CAS  PubMed  Google Scholar 

  34. Safa F, Jafari Ghadimi M. Graph theoretical atom-type-based descriptors for structural characterization and retention prediction of acyclic alkanes. Mosc Univ Chem Bull. 2021;76:157–68. https://doi.org/10.1093/chromsci/bmy081.

    Article  CAS  Google Scholar 

  35. Safa F, Manouchehri F. Unified linear and nonlinear models for retention prediction of aliphatic aldehydes and ketones in different columns and temperatures: application of atom-type-based AI topological indices. Chem Africa. 2022. https://doi.org/10.1007/s42250-022-00495-1.

    Article  Google Scholar 

  36. Pan Y, Jiang J, Wang Z. Quantitative structure–property relationship studies for predicting flash points of alkanes using group bond contribution method with back-propagation neural network. J Hazard Mater. 2007;147:424–30.

    Article  CAS  PubMed  Google Scholar 

  37. Mathieu D. Inductive modeling of physico-chemical properties: Flash point of alkanes. J Hazard Mater. 2010;179:1161–4.

    Article  CAS  PubMed  Google Scholar 

  38. Mathieu D. Flash points of organosilicon compounds: How data for alkanes combined with custom additive fragments can expedite the development of predictive models. Ind Eng Chem Res. 2012;51:14309–15.

    Article  CAS  Google Scholar 

  39. Yi-min D, Hui L, Xiao-Qing C, You-Nian L, Xun L, Zhi-Ping Z, Yue-Fei Z, Zhong C. A new group contribution-based method for estimation of flash point temperature of alkanes. J Cent South Univ. 2015;22:30–6.

    Article  Google Scholar 

  40. Albahri TA, Esmael NAM. SGC based prediction of the flash point temperature of pure compounds. J Loss Prev Process Ind. 2018;54:303–11.

    Article  CAS  Google Scholar 

  41. http://ull.chemistry.uakron.edu/erd/index.html.

  42. Dean JA. Lange’s Handbook of Chemistry. 15th ed. New York: McGraw-Hill; 1999.

    Google Scholar 

  43. MATLAB R2013a, The Math Works Inc., http://www.mathworks.com

  44. SPSS for Windows, Statistical package for IBM PC, Release 20.0, SPSS Inc., http://www.spss.com.

  45. Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math. 1963;11:431–41.

    Article  Google Scholar 

  46. Andrea TA, Kalayeh H. Applications of neural networks in quantitative structure-activity relationships of dihydrofolate reductase inhibitors. J Med Chem. 1991;34:2824–36.

    Article  CAS  PubMed  Google Scholar 

  47. Aleboyeh A, Kasiri MB, Olya ME, Aleboyeh H. Prediction of azo dye decolorization by UV/H2O2 using artificial neural networks. Dyes Pigm. 2008;77:288–94.

    Article  CAS  Google Scholar 

  48. Needham DE, Wei IC, Seybold PG. Molecular modeling of the physical properties of alkanes. J Am Chem Soc. 1988;110:4186–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Armita Safa, M.Sc. student in Bioinformatics at the University of British Columbia for her valuable help in writing the algorithms during the computational stage of the work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

FF contributed to data analyzing and writing the original draft. FS contributed to supervision, project administration, interpretation, writing–review and editing.

Corresponding author

Correspondence to Fariba Safa.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazehi, F., Safa, F. Atomic-level AI topological indices as efficient descriptors for developing predictive QSPR models for flash points of acyclic alkanes. J Therm Anal Calorim 148, 2129–2138 (2023). https://doi.org/10.1007/s10973-022-11859-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11859-7

Keywords

Navigation