Skip to main content
Log in

A comprehensive review of the effects of various factors on the thermal conductivity and rheological characteristics of CNT nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

CNT-based nanofluids have been shown to have the highest thermal conductivity when compared to other types of nanofluids. As a result, the CNT-based fluid is now regarded as a new generation of nanofluids, attracting researchers to investigate its thermophysical properties and potential applications in a variety of heat transfer applications. However, there is a disparity in the data for thermophysical properties, and different claims about its long-term stability have been made. This work attempted to comprehend a broader field of study on the thermophysical characteristics of CNT-based nanofluids, which could aid the scientific community in making further advances in the field of CNT-based nanofluids. The synthesis, characterization, and experimental findings on the thermal conductivity and viscosity of CNT-based nanofluids are all included in this paper. Numerous factors influencing thermal conductivity and viscosity are thoroughly discussed. Additionally, numerous models for predicting the thermal conductivity and viscosity of nanofluids based on CNTs are investigated. The current work suggests the use of ANN models that can account for many factors in setting the correlation for thermal conductivity and viscosity and are accurate in predicting results. Apart from thermophysical properties, the hazardous effect of CNT on human health and the contribution of different works in the CNT usage for improving the performance of a solar collector are summarized to provide insightful information on advancement in this field. The study recommends standardization in CNT nanofluid preparation and thermophysical property measurement to eliminate disparity in results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Purusothaman A. Investigation of natural convection heat transfer performance of the QFN-PCB electronic module by using nanofluid for power electronics cooling applications. Adv Powder Technol. 2018;29:996–1004.

    Article  CAS  Google Scholar 

  2. Hajatzadeh Pordanjani A, Aghakhani S, Afrand M, Mahmoudi B, Mahian O, Wongwises S. An updated review on application of nanofluids in heat exchangers for saving energy. Energy Convers Manag. 2019;198:111886.

    Article  CAS  Google Scholar 

  3. Qi C, Liu M, Tang J. Influence of triangle tube structure with twisted tape on the thermo-hydraulic performance of nanofluids in heat-exchange system based on thermal and exergy efficiency. Energy Convers Manag. 2019;192:243–68.

    Article  CAS  Google Scholar 

  4. Bashirnezhad K, Bazri S, Safaei MR, Goodarzi M, Dahari M, Mahian O, et al. Viscosity of nanofluids: a review of recent experimental studies. Int Commun Heat Mass Transf. 2016;73:114–23.

    Article  CAS  Google Scholar 

  5. Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf. 1999;121:280–9.

    Article  Google Scholar 

  6. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78:718–20.

    Article  CAS  Google Scholar 

  7. Li CH, Peterson GP. The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids. J Appl Phys. 2007;101:044312.

    Article  Google Scholar 

  8. Wen D, Ding Y. Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). J Thermophys Heat Transf. 2004;18:481–5.

    Article  CAS  Google Scholar 

  9. Assael MJ, Metaxa IN, Arvanitidis J, Christofilos D, Lioutas C. Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants. Int J Thermophys. 2005;26:647–64.

    Article  CAS  Google Scholar 

  10. Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2006;49:240–50.

    Article  CAS  Google Scholar 

  11. Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf. 2009;52:5090–101.

    Article  CAS  Google Scholar 

  12. Li J, Kleinstreuer C. Thermal performance of nanofluid flow in microchannels. Int J Heat Fluid Flow. 2008;29:1221–32.

    Article  CAS  Google Scholar 

  13. Ramezanizadeh M, Alhuyi Nazari M, Hossein Ahmadi M, Chen L. A review on the approaches applied for cooling fuel cells. Int J Heat Mass Transf. 2019;139:517–25.

    Article  CAS  Google Scholar 

  14. Ahmadi MH, Ghazvini M, Sadeghzadeh M, Alhuyi Nazari M, Ghalandari M. Utilization of hybrid nanofluids in solar energy applications: a review. Nano-Struct Nano-Objects. 2019;20:100386.

    Article  Google Scholar 

  15. Zhang SY, Ge Z, Wang HT, Wang H. Characteristics of flow boiling heat transfer and pressure drop of MWCNT–R123 nanorefrigerant: experimental investigations and correlations. Nanoscale Microscale Thermophys Eng. 2016;20:97–120.

    Article  CAS  Google Scholar 

  16. Tiwary B, Kumar R, Singh PK. Thermofluidic characteristic of a nanofluid-cooled oblique fin heat sink: an experimental and numerical investigation. Int J Therm Sci. 2022;171:107214.

    Article  CAS  Google Scholar 

  17. Kumar R, Tiwary B, Singh PK. Thermofluidic analysis of Al2O3-water nanofluid cooled branched wavy heat sink. Appl Therm Eng. 2022;201:117787.

    Article  CAS  Google Scholar 

  18. Borode A, Ahmed N, Olubambi P. A review of solar collectors using carbon-based nanofluids. J Clean Prod. 2019;241:118311.

    Article  CAS  Google Scholar 

  19. Sidik NAC, Yazid MNAWM, Mamat R. Recent advancement of nanofluids in engine cooling system. Renew Sustain Energy Rev. 2017;75:137–44.

    Article  Google Scholar 

  20. Yang L, Du K, Zhang X. Influence factors on thermal conductivity of ammonia-water nanofluids. J Cent South Univ. 2012;19:1622–8.

    Article  CAS  Google Scholar 

  21. Bo L, Zhang X, Luo Z, Saboori T, Dehghan M, Ghasemizadeh M, et al. An overview of the applications of ionic fluids and deep eutectic solvents enhanced by nanoparticles. J Therm Anal Calorim. 2022;147:7589–601.

    Article  CAS  Google Scholar 

  22. Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci (Oxf). 2011;36:914–44.

    Article  CAS  Google Scholar 

  23. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett. 2001;79:2252–4.

    Article  CAS  Google Scholar 

  24. Liu MS, Ching-Cheng Lin M, Te HI, Wang CC. Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Commun Heat Mass Transf. 2005;32:1202–10.

    Article  CAS  Google Scholar 

  25. Murshed SMS, Nieto de Castro CA. Superior thermal features of carbon nanotubes-based nanofluids: a review. Renew Sustain Energy Rev. 2014;37:155–67.

    Article  CAS  Google Scholar 

  26. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–8.

    Article  CAS  Google Scholar 

  27. Dai H, Wong EW, Lieber CM. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science. 1996;272:523–6.

    Article  CAS  Google Scholar 

  28. Chandra B, Bhattacharjee J, Purewal M, Son YW, Wu Y, Huang M, et al. Molecular-scale quantum dots from carbon nanotube heterojunctions. Nano Lett. 2009;9:1544–8.

    Article  CAS  PubMed  Google Scholar 

  29. Wepasnick KA, Smith BA, Bitter JL, Howard FD. Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem. 2010;396:1003–14.

    Article  CAS  PubMed  Google Scholar 

  30. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. Electrical conductivity of individual carbon nanotubes. Nature. 1996;382:54–6.

    Article  CAS  Google Scholar 

  31. Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature. 1998;393:49–52.

    Article  CAS  Google Scholar 

  32. Schönenberger C, Bachtold A, Strunk C, Salvetat JP, Forró L. Interference and interaction in multi-wall carbon nanotubes. Appl Phys A Mater Sci Process. 1999;69:283–95.

    Article  Google Scholar 

  33. Delaney P, Di Ventra M, Pantelides ST. Quantized conductance of multiwalled carbon nanotubes. Appl Phys Lett. 1999;75:3787–9.

    Article  CAS  Google Scholar 

  34. Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon. 2019;141:467–80.

    Article  CAS  Google Scholar 

  35. Modi A, Koratkar N, Lass E, Wei B, Ajayan PM. Miniaturized gas ionization sensors using carbon nanotubes. Nature. 2003;424:171–4.

    Article  CAS  PubMed  Google Scholar 

  36. Yue GZ, Qiu Q, Gao B, Cheng Y, Zhang J, Shimoda H, et al. Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode. Appl Phys Lett. 2002;81:355–7.

    Article  CAS  Google Scholar 

  37. Byrne MT, Guin’ko YK. Recent advances in research on carbon nanotube - polymer composites. Adv Mater. 2010;22:1672–88.

    Article  CAS  PubMed  Google Scholar 

  38. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. 2000;287:637–40.

    Article  CAS  PubMed  Google Scholar 

  39. Ruoff RS, Tersoff J, Lorents DC, Subramoney S, Chan B. Radial deformation of carbon nanotubes by Van Der Waals forces. Nature. 1993;364:514–6.

    Article  CAS  Google Scholar 

  40. Iijima S, Brabec C, Maiti A, Bernholc J. Structural flexibility of carbon nanotubes. J Chem Phys. 1996;104:2089–92.

    Article  CAS  Google Scholar 

  41. Ruoff RS, Lorents DC. Mechanical and thermal properties of carbon nanotubes. Carbon. 1995;33:925–30.

    Article  CAS  Google Scholar 

  42. Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature. 1996;381:678–80.

    Article  CAS  Google Scholar 

  43. Hernández E, Goze C, Bernier P, Rubio A. Elastic properties of C and BxCyNy Composite nanotubes. Phys Rev Lett. 1998;80:4502–5.

    Article  Google Scholar 

  44. Chen L, Xie H. Surfactant-free nanofluids containing double- and single-walled carbon nanotubes functionalized by a wet-mechanochemical reaction. Thermochim Acta. 2010;497:67–71.

    Article  CAS  Google Scholar 

  45. Ranjbar A, Ismail M, Guo ZP, Yu XB, Liu HK. Effects of CNTs on the hydrogen storage properties of MgH2 and MgH2-BCC composite. Int J Hydrog Energy. 2010;35:7821–6.

    Article  CAS  Google Scholar 

  46. Bahrami M, Akbari M, Karimipour A, Afrand M. An experimental study on rheological behavior of hybrid nanofluids made of iron and copper oxide in a binary mixture of water and ethylene glycol: non-Newtonian behavior. Exp Therm Fluid Sci. 2016;79:231–7.

    Article  CAS  Google Scholar 

  47. Hemmat Esfe M, Abbasian Arani AA, Esfandeh S, Afrand M. Proposing new hybrid nano-engine oil for lubrication of internal combustion engines: preventing cold start engine damages and saving energy. Energy. 2019;170:228–38.

    Article  CAS  Google Scholar 

  48. Moradikazerouni A, Hajizadeh A, Safaei MR, Afrand M, Yarmand H, Zulkifli NWBM. Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: optimal artificial neural network and curve-fitting. Physica A. 2019;521:138–45.

    Article  CAS  Google Scholar 

  49. Asadi A, Asadi M, Rezaniakolaei A, Rosendahl LA, Afrand M, Wongwises S. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: an experimental and theoretical investigation. Int J Heat Mass Transf. 2018;117:474–86.

    Article  CAS  Google Scholar 

  50. Hwang Y, Lee JK, Lee CH, Jung YM, Cheong SI, Lee CG, et al. Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta. 2007;455:70–4.

    Article  CAS  Google Scholar 

  51. Jang SP, Choi SUS. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;84:4316–8.

    Article  CAS  Google Scholar 

  52. Keblinski P, Phillpot SR, Choi SUS, Eastman JA. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf. 2001;45:855–63.

    Article  Google Scholar 

  53. Murshed SMS, Leong KC, Yang C. Enhanced thermal conductivity of TiO2: water based nanofluids. Int J Therm Sci. 2005;44:367–73.

    Article  CAS  Google Scholar 

  54. Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf. 1999;13:474–80.

    Article  CAS  Google Scholar 

  55. Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys. 2009;106:014304.

    Article  Google Scholar 

  56. Babita, Sharma SK, Gupta SM. Preparation and evaluation of stable nanofluids for heat transfer application: a review. Exp Therm Fluid Sci. 2016;79:202–12.

    Article  CAS  Google Scholar 

  57. Prasher R, Phelan PE, Bhattacharya P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett. 2006;6:1529–34.

    Article  CAS  PubMed  Google Scholar 

  58. Feng Y, Yu B, Xu P, Zou M. The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles. J Phys D Appl Phys. 2007;40:3164–71.

    Article  CAS  Google Scholar 

  59. Chopkar I, Sudarshan S, Das PK, Manna I. Effect of particle size on thermal conductivity of nanofluid. Metall Mater Trans A. 2008;39:1535–42.

    Article  Google Scholar 

  60. Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci. 2009;48:363–71.

    Article  CAS  Google Scholar 

  61. Zhang X, Gu H, Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci. 2007;31:593–9.

    Article  CAS  Google Scholar 

  62. Gu B, Hou B, Lu Z, Wang Z, Chen S. Thermal conductivity of nanofluids containing high aspect ratio fillers. Int J Heat Mass Transf. 2013;64:108–14.

    Article  CAS  Google Scholar 

  63. Chen L, Xie H. Silicon oil based multiwalled carbon nanotubes nanofluid with optimized thermal conductivity enhancement. Colloids Surf A. 2009;352:136–40.

    Article  CAS  Google Scholar 

  64. Xie H, Lee H, Youn W, Choi M. Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J Appl Phys. 2003;94:4967–71.

    Article  CAS  Google Scholar 

  65. Assael MJ, Chen CF, Metaxa I, Wakeham WA. Thermal conductivity of suspensions of carbon nanotubes in water. Int J Thermophys. 2004;25:971–85.

    Article  CAS  Google Scholar 

  66. Xue QZ. Model for the effective thermal conductivity of carbon nanotube composites. Nanotechnology. 2006;17:1655–60.

    Article  CAS  PubMed  Google Scholar 

  67. Yang Y, Grulke EA, Zhang ZG, Wu G. Thermal and rheological properties of carbon nanotube-in-oil dispersions. J Appl Phys. 2006;99:114307.

    Article  Google Scholar 

  68. Baratpour M, Karimipour A, Afrand M, Wongwises S. Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol. Int Commun Heat Mass Transf. 2016;74:108–13.

    Article  CAS  Google Scholar 

  69. Esfe MH, Rostamian H, Afrand M, Wongwises S. Examination of effects of multi-walled carbon nanotubes on rheological behavior of engine oil (10W40). J Nanostruct. 2016;6:257–63.

    CAS  Google Scholar 

  70. Hemmat Esfe M, Afrand M, Rostamian SH, Toghraie D. Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions. Exp Therm Fluid Sci. 2017;80:384–90.

    Article  CAS  Google Scholar 

  71. Eshgarf H, Sina N, Esfe MH, Izadi F, Afrand M. Prediction of rheological behavior of MWCNTs–SiO2/EG–water non-Newtonian hybrid nanofluid by designing new correlations and optimal artificial neural networks. J Therm Anal Calorim. 2018;132:1029–38.

    Article  CAS  Google Scholar 

  72. Ahmadi Nadooshan A, Hemmat Esfe M, Afrand M. Evaluation of rheological behavior of 10W40 lubricant containing hybrid nano-material by measuring dynamic viscosity. Physica E. 2017;92:47–54.

    Article  CAS  Google Scholar 

  73. Eshgarf H, Afrand M. An experimental study on rheological behavior of non-Newtonian hybrid nano-coolant for application in cooling and heating systems. Exp Therm Fluid Sci. 2016;76:221–7.

    Article  CAS  Google Scholar 

  74. Izadi F, Ranjbarzadeh R, Kalbasi R, Afrand M. A new experimental correlation for non-Newtonian behavior of COOH-DWCNTs/antifreeze nanofluid. Physica E. 2018;98:83–9.

    Article  CAS  Google Scholar 

  75. Alirezaie A, Saedodin S, Esfe MH, Rostamian SH. Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO: engine oil hybrid nanofluids and modelling the results with artificial neural networks. J Mol Liq. 2017;241:173–81.

    Article  CAS  Google Scholar 

  76. Estellé P, Halelfadl S, Maré T. Lignin as dispersant for water-based carbon nanotubes nanofluids: impact on viscosity and thermal conductivity. Int Commun Heat Mass Transf. 2014;57:8–12.

    Article  Google Scholar 

  77. Jo B, Banerjee D. Viscosity measurements of multi-walled carbon nanotubes-based high temperature nanofluids. Mater Lett. 2014;122:212–5.

    Article  CAS  Google Scholar 

  78. Halelfadl S, Estellé P, Aladag B, Doner N, Maré T. Viscosity of carbon nanotubes water-based nanofluids: influence of concentration and temperature. Int J Therm Sci. 2013;71:111–7.

    Article  CAS  Google Scholar 

  79. Halelfadl S, Maré T, Estellé P. Efficiency of carbon nanotubes water based nanofluids as coolants. Exp Therm Fluid Sci. 2014;53:104–10.

    Article  CAS  Google Scholar 

  80. Li F-CC, Yang J-CC, Zhou W-WW, He Y-RR, Huang Y-MM, Jiang B-CC. Experimental study on the characteristics of thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids containing multiwalled carbon nanotubes. Thermochim Acta. 2013;556:47–53.

    Article  CAS  Google Scholar 

  81. Ahmadi Nadooshan A, Eshgarf H, Afrand M. Measuring the viscosity of Fe3O4-MWCNTs/EG hybrid nanofluid for evaluation of thermal efficiency: Newtonian and non-Newtonian behavior. J Mol Liq. 2018;253:169–77.

    Article  CAS  Google Scholar 

  82. Fan Z, Advani SG. Rheology of multiwall carbon nanotube suspensions. J Rheol. 2007;51:585–604.

    Article  CAS  Google Scholar 

  83. Ma AWK, Mackley MR, Chinesta F, Ammar A. The rheological modelling of carbon nanotube (CNT) suspensions in steady shear flows. IntJ Mater Form. 2008;1:83–8.

    Article  Google Scholar 

  84. Yamanoi M, Leer C, van Hattum FWJ, Carneiro OS, Maia JM. Direct fibre simulation of carbon nanofibres suspensions in a Newtonian fluid under simple shear. J Colloid Interface Sci. 2010;347:183–91.

    Article  CAS  PubMed  Google Scholar 

  85. Ruan B, Jacobi AM. Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions. Nanoscale Res Lett. 2012;7:127.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wang X, Zhu D, Yang S, Wang X, Zhu D, Yang S, et al. Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem Phys Lett. 2009;470:107–11.

    Article  CAS  Google Scholar 

  87. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED. 1995. p. 99–105.

  88. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128:240–50.

    Article  Google Scholar 

  89. Taherian H, Alvarado JL, Languri EM. Enhanced thermophysical properties of multiwalled carbon nanotubes based nanofluids. Part 1: critical review. Renew Sustain Energy Rev. 2018;82:4326–36.

    Article  CAS  Google Scholar 

  90. Ghalandari M, Maleki A, Haghighi A, Safdari Shadloo M, Alhuyi Nazari M, Tlili I. Applications of nanofluids containing carbon nanotubes in solar energy systems: a review. J Mol Liq. 2020;313:113476.

    Article  CAS  Google Scholar 

  91. James Clerk M, Maxwell JC, James CM. A treatise on electricity and magnetism. Cambridge: Cambridge University Press; 2010.

    Google Scholar 

  92. Hamilton RL. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1:187–91.

    Article  CAS  Google Scholar 

  93. Xuan Y, Li Q, Hu W. Aggregation structure and thermal conductivity of nanofluids. AIChE J. 2003;49:1038–43.

    Article  CAS  Google Scholar 

  94. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571.

    Article  CAS  Google Scholar 

  95. Namburu PK, Kulkarni DP, Misra D, Das DK. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp Therm Fluid Sci. 2007;32:397–402.

    Article  CAS  Google Scholar 

  96. Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83:97–117.

    Article  Google Scholar 

  97. Zhou F, Yang L. An anisotropic thermal conductivity model for CNTs nanofluids by considering the discontinuity of nanotubes in thermal conduction path. Int Commun Heat Mass Transf. 2021;128:105620.

    Article  CAS  Google Scholar 

  98. Yang L, Xu X. A renovated Hamilton-Crosser model for the effective thermal conductivity of CNTs nanofluids. Int Commun Heat Mass Transf. 2017;81:42–50.

    Article  CAS  Google Scholar 

  99. Shi Q, Liu Y, Chen F, Dong S. Investigation on rheological properties of carbon nanotube nanofluids. Phys Chem Liq. 2019;57:37–42.

    Article  CAS  Google Scholar 

  100. Wang X-QQ, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46:1–19.

    Article  Google Scholar 

  101. Li X, Chen W, Zou C. The stability, viscosity and thermal conductivity of carbon nanotubes nanofluids with high particle concentration: a surface modification approach. Powder Technol. 2020;361:957–67.

    Article  CAS  Google Scholar 

  102. Alagumalai A, Qin C, Vimal KEK, Solomin E, Yang L, Zhang P, et al. Conceptual analysis framework development to understand barriers of nanofluid commercialization. Nano Energy. 2022;92:106736.

    Article  CAS  Google Scholar 

  103. Yang L, Ji W, Huang J, Xu G. An updated review on the influential parameters on thermal conductivity of nano-fluids. J Mol Liq. 2019;296:111780.

    Article  CAS  Google Scholar 

  104. Aruoja V, Dubourguier HC, Kasemets K, Kahru A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ. 2009;407:1461–8.

    Article  CAS  PubMed  Google Scholar 

  105. Teow Y, Asharani PV, Hande MP, Valiyaveettil S. Health impact and safety of engineered nanomaterials. Chem Commun. 2011;47:7025–38.

    Article  CAS  Google Scholar 

  106. Pui DYH, Chen SC, Zuo Z. PM2.5 in China: measurements, sources, visibility and health effects, and mitigation. Particuology. 2014;13:1–26.

    Article  CAS  Google Scholar 

  107. Shvedova A, Castranova V, Kisin E, Schwegler-Berry D, Murray A, Gandelsman V, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health Part A. 2003;66:1909–26.

    Article  CAS  Google Scholar 

  108. Kumarathasan P, Breznan D, Das D, Salam MA, Siddiqui Y, Mackinnon-Roy C, et al. Cytotoxicity of carbon nanotube variants: a comparative in vitro exposure study with A549 epithelial and J774 macrophage cells. Nanotoxicology. 2015;9:148–61.

    Article  CAS  PubMed  Google Scholar 

  109. Jama M, Singh T, Gamaleldin SM, Koc M, Samara A, Isaifan RJ, et al. Critical review on nanofluids: preparation, characterization, and applications. J Nanomater. 2016;2016:1–22.

    Article  Google Scholar 

  110. Ebbesen TW, Ajayan PM. Large-scale synthesis of carbon nanotubes. Nature. 1992;358:220–2.

    Article  CAS  Google Scholar 

  111. Journet C, Maser WK, Bernier P, Loiseau A, Lamy de la Chapelle M, Lefrant S, et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature. 1997;388:756–8.

    Article  CAS  Google Scholar 

  112. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, et al. Crystalline ropes of metallic carbon nanotubes. Science. 1996;273:483–7.

    Article  CAS  PubMed  Google Scholar 

  113. Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, et al. Large-scale synthesis of aligned carbon nanotubes. Science. 1996;274:1701–3.

    Article  CAS  PubMed  Google Scholar 

  114. Xie SS, Li WZ, Pan ZW, Chang BH, Sun LF. Carbon nanotube arrays. Eur Phys J D. 1999;9:85–9.

    Article  CAS  Google Scholar 

  115. Hordy N, Mendoza-Gonzalez NY, Coulombe S, Meunier JL. The effect of carbon input on the morphology and attachment of carbon nanotubes grown directly from stainless steel. Carbon. 2013;63:348–57.

    Article  CAS  Google Scholar 

  116. Lee CJ, Lyu SC, Kim HW, Park CY, Yang CW. Large-scale production of aligned carbon nanotubes by the vapor phase growth method. Chem Phys Lett. 2002;359:109–14.

    Article  CAS  Google Scholar 

  117. Dai H. Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res. 2002;35:1035–44.

    Article  CAS  PubMed  Google Scholar 

  118. Azam MA, Manaf NSA, Talib E, Bistamam MSA. Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: a review. Ionics. 2013;19:1455–76.

    Article  CAS  Google Scholar 

  119. He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C. Carbon nanotubes: applications in pharmacy and medicine. Biomed Res Int. 2013;2013:1–12.

    Google Scholar 

  120. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Electronic structure of chiral graphene tubules. Appl Phys Lett. 1992;60:2204–6.

    Article  CAS  Google Scholar 

  121. Sun YP, Fu K, Lin Y, Huang W. Functionalized carbon nanotubes: properties and applications. Acc Chem Res. 2002;35:1096–104.

    Article  CAS  PubMed  Google Scholar 

  122. Huang W, Lin Y, Taylor S, Gaillard J, Rao AM, Sun YP. Sonication-assisted functionalization and solubilization of carbon nanotubes. Nano Lett. 2002;2:231–4.

    Article  CAS  Google Scholar 

  123. Hirsch A. Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed. 2002;41:1853.

    Article  CAS  Google Scholar 

  124. Cheng F, Adronov A. Noncovalent functionalization and solubilization of carbon nanotubes by using a conjugated Zn-porphyrin polymer. Chem Eur J. 2006;12:5053–9.

    Article  CAS  PubMed  Google Scholar 

  125. Star A, Stoddart JF, Steuerman D, Diehl M, Boukai A, Wong EW, et al. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew Chem Int Ed. 2001;40:1721–5.

    Article  CAS  Google Scholar 

  126. Star A, Stoddart JF. Dispersion and solubilization of single-walled carbon nanotubes with a hyperbranched polymer. Macromolecules. 2002;35:7516–20.

    Article  CAS  Google Scholar 

  127. Star A, Liu Y, Grant K, Ridvan L, Stoddart JF, Steuerman DW, et al. Noncovalent side-wall functionalization of single-walled carbon nanotubes. Macromolecules. 2003;36:553–60.

    Article  CAS  Google Scholar 

  128. Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, et al. Solution properties of single-walled carbon nanotubes. Science. 1998;282:95–8.

    Article  CAS  PubMed  Google Scholar 

  129. Zhu HT, Lin YS, Yin YS. A novel one-step chemical method for preparation of copper nanofluids. J Colloid Interface Sci. 2004;277:100–3.

    Article  CAS  PubMed  Google Scholar 

  130. Yadav D, Kumar R, Singh PK. Experimental investigation on rheology property of MWCNT-Al2O3/water hybrid nanofluid. In: AIP conference proceedings. American Institute of Physics Inc.; 2018. p. 020042.

  131. Yadav D, Dansena P, Ghosh SK, Singh PK. A unique multilayer perceptron model (ANN) for different oxide/EG nanofluid’s viscosity from the experimental study. Physica A. 2020;549:124030.

    Article  CAS  Google Scholar 

  132. Hamaker HC. The London-van der Waals attraction between spherical particles. Physica. 1937;4:1058–72.

    Article  CAS  Google Scholar 

  133. Almanassra IW, Manasrah AD, Al-Mubaiyedh UA, Al-Ansari T, Malaibari ZO, Atieh MA. An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: a comparison study. J Mol Liq. 2020;304:111025.

    Article  CAS  Google Scholar 

  134. Duan WH, Wang Q, Collins F. Dispersion of carbon nanotubes with SDS surfactants: a study from a binding energy perspective. Chem Sci. 2011;2:1407–13.

    Article  CAS  Google Scholar 

  135. Yu J, Grossiord N, Koning CE, Loos J. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon. 2007;45:618–23.

    Article  CAS  Google Scholar 

  136. Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science. 2000;290:1331–4.

    Article  CAS  PubMed  Google Scholar 

  137. Manasrah AD, Al-Mubaiyedh UA, Laui T, Ben-Mansour R, Al-Marri MJ, Almanassra IW, et al. Heat transfer enhancement of nanofluids using iron nanoparticles decorated carbon nanotubes. Appl Therm Eng. 2016;107:1008–18.

    Article  CAS  Google Scholar 

  138. Manasrah AD, Almanassra IW, Marei NN, Al-Mubaiyedh UA, Laoui T, Atieh MA. Surface modification of carbon nanotubes with copper oxide nanoparticles for heat transfer enhancement of nanofluids. RSC Adv. 2018;8:1791–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mohamed A, Anas AK, Abu Bakar S, Aziz AA, Sagisaka M, Brown P, et al. Preparation of multiwall carbon nanotubes (MWCNTs) stabilised by highly branched hydrocarbon surfactants and dispersed in natural rubber latex nanocomposites. Colloid Polym Sci. 2014;292:3013–23.

    Article  CAS  Google Scholar 

  140. Ghadimi A, Saidur R, Metselaar HSC. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. 2011;54:4051–68.

    Article  CAS  Google Scholar 

  141. Ruan B, Jacobi AM. Heat transfer characteristics of multiwall carbon nanotube suspensions (MWCNT nanofluids) in intertube falling-film flow. Int J Heat Mass Transf. 2012;55:3186–95.

    Article  CAS  Google Scholar 

  142. Nadler M, Mahrholz T, Riedel U, Schilde C, Kwade A. Preparation of colloidal carbon nanotube dispersions and their characterisation using a disc centrifuge. Carbon. 2008;46:1384–92.

    Article  CAS  Google Scholar 

  143. Manasrah AD, Laoui T, Zaidi SJ, Atieh MA. Effect of PEG functionalized carbon nanotubes on the enhancement of thermal and physical properties of nanofluids. Exp Therm Fluid Sci. 2017;84:231–41.

    Article  CAS  Google Scholar 

  144. Phuoc TX, Massoudi M, Chen R-HH, Jo B, Banerjee D, Fontes DH, et al. Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan. Int J Therm Sci. 2011;50:12–8.

    Article  CAS  Google Scholar 

  145. Rashmi W, Ismail AF, Sopyan I, Jameel AT, Yusof F, Khalid M, et al. Stability and thermal conductivity enhancement of carbon nanotube nanofluid using gum arabic. J Exp Nanosci. 2011;6:567–79.

    Article  CAS  Google Scholar 

  146. Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 2003;3:269–73.

    Article  CAS  Google Scholar 

  147. Kim HS, Park WI, Kang M, Jin HJ. Multiple light scattering measurement and stability analysis of aqueous carbon nanotube dispersions. J Phys Chem Solids. 2008;69:1209–12.

    Article  CAS  Google Scholar 

  148. Horn RG. Surface forces and their action in ceramic materials. J Am Ceram Soc. 1990;73:1117–35.

    Article  CAS  Google Scholar 

  149. Lewis JA. Colloidal processing of ceramics. J Am Ceram Soc. 2000;83:2341–59.

    Article  CAS  Google Scholar 

  150. Ridaoui H, Jada A, Vidal L, Donnet JB. Effect of cationic surfactant and block copolymer on carbon black particle surface charge and size. Colloids Surf A. 2006;278:149–59.

    Article  CAS  Google Scholar 

  151. Kim HD, Kim J, Kim MH. Experimental studies on CHF characteristics of nano-fluids at pool boiling. Int J Multiph Flow. 2007;33:691–706.

    Article  CAS  Google Scholar 

  152. Falvo MR, Taylor RM, Helser A, Chi V, Brooks FP, Washburn S, et al. Nanometre-scale rolling and sliding of carbon nanotubes. Nature. 1999;397:236–8.

    Article  CAS  PubMed  Google Scholar 

  153. Wang Z, Liu Q, Zhu H, Liu H, Chen Y, Yang M. Dispersing multi-walled carbon nanotubes with water-soluble block copolymers and their use as supports for metal nanoparticles. Carbon. 2007;45:285–92.

    Article  CAS  Google Scholar 

  154. Jiang L, Gao L, Sun J. Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci. 2003;260:89–94.

    Article  CAS  PubMed  Google Scholar 

  155. Grossiord N, Regev O, Loos J, Meuldijk J, Koning CE. Time-dependent study of the exfoliation process of carbon nanotubes in aqueous dispersions by using UV-visible spectroscopy. Anal Chem. 2005;77:5135–9.

    Article  CAS  PubMed  Google Scholar 

  156. Gao T, Li C, Zhang Y, Yang M, Jia D, Jin T, et al. Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribol Int. 2019;131:51–63.

    Article  CAS  Google Scholar 

  157. Han ZH, Yang B, Kim SH, Zachariah MR. Application of hybrid sphere/carbon nanotube particles in nanofluids. Nanotechnology. 2007;18:105701.

    Article  Google Scholar 

  158. Müller RH, Mehnert W. Partikelladung in der Laborpraxis. Paperback Apv. 1996. p. 254.

  159. Yadav D, Kumar R, Naruka DS, Singh PK. Experimental investigation on viscosity of the nanofluids with different parameters. SSRN Electron J. 2017. https://doi.org/10.2139/ssrn.3101292.

    Article  Google Scholar 

  160. Chen L, Xie H. Properties of carbon nanotube nanofluids stabilized by cationic Gemini surfactant. Thermochim Acta. 2010;506:62–6.

    Article  CAS  Google Scholar 

  161. Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, et al. Optical properties of single-wall carbon nanotubes. Synth Met. 1999;103:2555–8.

    Article  CAS  Google Scholar 

  162. Hamada N, Sawada SI, Oshiyama A. New one-dimensional conductors: graphitic microtubules. Phys Rev Lett. 1992;68:1579–81.

    Article  CAS  PubMed  Google Scholar 

  163. Gupta N, Gupta SM, Sharma SK. Synthesis, characterization and dispersion stability of water-based Cu–CNT hybrid nanofluid without surfactant. Microfluid Nanofluid. 2021;25:14.

    Article  CAS  Google Scholar 

  164. Wen D, Lin G, Vafaei S, Zhang K. Review of nanofluids for heat transfer applications. Particuology. 2009;7:141–50.

    Article  CAS  Google Scholar 

  165. Gharagozloo PE, Goodson KE. Aggregate fractal dimensions and thermal conduction in nanofluids. J Appl Phys. 2010;108:074309.

    Article  Google Scholar 

  166. Mehrali M, Sadeghinezhad E, Rosen MA, Akhiani AR, Tahan Latibari S, Mehrali M, et al. Heat transfer and entropy generation for laminar forced convection flow of graphene nanoplatelets nanofluids in a horizontal tube. Int Commun Heat Mass Transf. 2015;66:23–31.

    Article  CAS  Google Scholar 

  167. Jalal R, Goharshadi EK, Abareshi M, Moosavi M, Yousefi A, Nancarrow P. ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Mater Chem Phys. 2010;121:198–201.

    Article  CAS  Google Scholar 

  168. Syam Sundar L, Singh MK, Sousa ACM. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int Commun Heat Mass Transf. 2013;44:7–14.

    Article  CAS  Google Scholar 

  169. Xing M, Yu J, Wang R. Experimental investigation and modelling on the thermal conductivity of CNTs based nanofluids. Int J Therm Sci. 2016;104:404–11.

    Article  CAS  Google Scholar 

  170. Patel HE, Sundararajan T, Das SK. An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanopart Res. 2010;12:1015–31.

    Article  CAS  Google Scholar 

  171. Rehman WU, Merican ZMA, Bhat AH, Hoe BG, Sulaimon AA, Akbarzadeh O, et al. Synthesis, characterization, stability and thermal conductivity of multi-walled carbon nanotubes (MWCNTs) and eco-friendly jatropha seed oil based nanofluid: an experimental investigation and modeling approach. J of Mol Liq. 2019;293:111534.

    Article  CAS  Google Scholar 

  172. Wu H, Al-Rashed AAAA, Barzinjy AA, Shahsavar A, Karimi A, Talebizadehsardari P. Curve-fitting on experimental thermal conductivity of motor oil under influence of hybrid nano additives containing multi-walled carbon nanotubes and zinc oxide. Phys A Stat. 2019;535:122128.

    Article  CAS  Google Scholar 

  173. Hemmat Esfe M, Esfandeh S, Saedodin S, Rostamian H. Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications. Appl Therm Eng. 2017;125:673–85.

    Article  CAS  Google Scholar 

  174. Hemmat Esfe M, Naderi A, Akbari M, Afrand M, Karimipour A. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J Therm Anal Calorim. 2015;121:1273–1238.

    Article  CAS  Google Scholar 

  175. Glory J, Bonetti M, Helezen M, Mayne-L’Hermite M, Reynaud C, Mayne-L’Hermite M, et al. Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes. J Appl Phys. 2008;103:094309.

    Article  Google Scholar 

  176. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids. Int Commun Heat Mass Transf. 2014;58:176–83.

    Article  CAS  Google Scholar 

  177. Soltanimehr M, Afrand M. Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems. Appl Therm Eng. 2016;105:716–23.

    Article  CAS  Google Scholar 

  178. Nasiri A, Shariaty-Niasar M, Rashidi AM, Khodafarin R. Effect of CNT structures on thermal conductivity and stability of nanofluid. Int J Heat Mass Transf. 2012;55:1529–35.

    Article  CAS  Google Scholar 

  179. Fontes DH, Ribatski G, Bandarra Filho EP. Experimental evaluation of thermal conductivity, viscosity and breakdown voltage AC of nanofluids of carbon nanotubes and diamond in transformer oil. Diam Rel Mater. 2015;58:115–21.

    Article  CAS  Google Scholar 

  180. Xing M, Yu J, Wang R. Thermo-physical properties of water-based single-walled carbon nanotube nanofluid as advanced coolant. Appl Therm Eng. 2015;87:344–51.

    Article  CAS  Google Scholar 

  181. Sabiha MA, Mostafizur RM, Saidur R, Mekhilef S. Experimental investigation on thermo physical properties of single walled carbon nanotube nanofluids. Int J Heat Mass Transf. 2016;93:862–71.

    Article  CAS  Google Scholar 

  182. Hameed A, Mukhtar A, Shafiq U, Qizilbash M, Khan MS, Rashid T, et al. Experimental investigation on synthesis, characterization, stability, thermo-physical properties and rheological behavior of MWCNTs-kapok seed oil based nanofluid. J Mol Liq. 2019;277:812–24.

    Article  CAS  Google Scholar 

  183. Ali ARI, Salam B. A review on nanofluid: preparation, stability, thermophysical properties, heat transfer characteristics and application. SN Appl Sci. 2020;2:1636.

    Article  CAS  Google Scholar 

  184. Vakili-Nezhaad G, Al-Wadhahi M, Gujrathi AM, Al-Maamari R, Mohammadi M. Effect of temperature and diameter of narrow single-walled carbon nanotubes on the viscosity of nanofluid: a molecular dynamics study. Fluid Phase Equilibria. 2017;434:193–9.

    Article  CAS  Google Scholar 

  185. Afrand M, Ahmadi Nadooshan A, Hassani M, Yarmand H, Dahari M. Predicting the viscosity of multi-walled carbon nanotubes/water nanofluid by developing an optimal artificial neural network based on experimental data. Int Commun Heat Mass Transf. 2016;77:49–53.

    Article  CAS  Google Scholar 

  186. Dalkilic ASS, Küçükyıldırım BOO, Akdogan Eker A, Çebi A, Tapan S, Jumpholkul C, et al. Experimental investigation on the viscosity of Water-CNT and Antifreeze-CNT nanofluids. Int Commun Heat Mass Transf. 2017;80:47–59.

    Article  CAS  Google Scholar 

  187. Hemmat Esfe M, Abbasian Arani AA, Madadi MR, Alirezaie A. A study on rheological characteristics of hybrid nano-lubricants containing MWCNT-TiO2 nanoparticles. J Mol Liq. 2018;260:229–36.

    Article  CAS  Google Scholar 

  188. Hemmat Esfe M, Abbasian Arani AA. An experimental determination and accurate prediction of dynamic viscosity of MWCNT(%40)-SiO2(%60)/5W50 nano-lubricant. J Mol Liq. 2018;259:227–37.

    Article  CAS  Google Scholar 

  189. Hemmat Esfe M, Abbasian Arani AA, Esfandeh S. Experimental study on rheological behavior of monograde heavy-duty engine oil containing CNTs and oxide nanoparticles with focus on viscosity analysis. J Mol Liq. 2018;272:319–29.

    Article  CAS  Google Scholar 

  190. Liu X, Mohammed HI, Ashkezari AZ, Shahsavar A, Hussein AK, Rostami S. An experimental investigation on the rheological behavior of nanofluids made by suspending multi-walled carbon nanotubes in liquid paraffin. J Mol Liq. 2020;300:112269.

    Article  CAS  Google Scholar 

  191. Pamies R, Avilés MD, Arias-Pardilla J, Carrión FJ, Sanes J, Bermúdez MD. Rheological study of new dispersions of carbon nanotubes in the ionic liquid 1-ethyl-3-methylimidazolium dicyanamide. J Mol Liq. 2019;278:368–75.

    Article  CAS  Google Scholar 

  192. Yadav D, Naruka DS, Singh PK. The insight flow characteristics of concentrated MWCNT in water base fluid: experimental study and ANN modelling. Heat Mass Transf. 2021;57:1829–44.

    Article  CAS  Google Scholar 

  193. Cuenca Y, Vernet A, Vallès M. Thermal conductivity enhancement of the binary mixture (NH3 + LiNO3) by the addition of CNTs. Int J Refrig. 2014;41:113–20.

    Article  CAS  Google Scholar 

  194. Balamurugan K, Baskar P, Kumar RM, Das S, Subramanian V. Effects of functionalization of carbon nanotubes on their dispersion in an ethylene glycol-water binary mixture: a molecular dynamics and ONIOM investigation. Phys Chem Chem Phys. 2014;16:24509–18.

    Article  CAS  PubMed  Google Scholar 

  195. Balamurugan K, Baskar P, Mahesh Kumar R, Das S, Subramanian V. Interaction of carbon nanotube with ethylene glycol-water binary mixture: a molecular dynamics and density functional theory investigation. J Phys Chem C. 2012;116:4365–73.

    Article  CAS  Google Scholar 

  196. Poongavanam GK, Murugesan R, Ramalingam V. Thermal and electrical conductivity enhancement of solar glycol-water mixture containing MWCNTs. Fuller Nanotubes Carbon Nanostruct. 2018;26:871–9.

    Article  CAS  Google Scholar 

  197. Saba F, Ahmed N, Khan U, Mohyud-Din ST. A novel coupling of (CNT-Fe3O4/H2O) hybrid nanofluid for improvements in heat transfer for flow in an asymmetric channel with dilating/squeezing walls. Int J Heat Mass Transf. 2019;136:186–95.

    Article  CAS  Google Scholar 

  198. Das PK. A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. J Mol Liq. 2017;240:420–46.

    Article  CAS  Google Scholar 

  199. Bahiraei M, Godini A, Shahsavar A. Thermal and hydraulic characteristics of a minichannel heat exchanger operated with a non-Newtonian hybrid nanofluid. J Taiwan Inst Chem Eng. 2018;84:149–61.

    Article  CAS  Google Scholar 

  200. Sahoo RR. Thermo-hydraulic characteristics of radiator with various shape nanoparticle-based ternary hybrid nanofluid. Powder Technol. 2020;370:19–28.

    Article  CAS  Google Scholar 

  201. Jamil M, Khan AM, Hegab H, Gong L, Mia M, Gupta MK, et al. Effects of hybrid Al2O3-CNT nanofluids and cryogenic cooling on machining of Ti–6Al–4V. Int J Adv Manuf Technol. 2019;102:3895–909.

    Article  Google Scholar 

  202. Rostamian SH, Biglari M, Saedodin S, Hemmat Esfe M. An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation. J Mol Liq. 2017;231:364–9.

    Article  CAS  Google Scholar 

  203. Gul T, Bilal M, Shuaib M, Mukhtar S, Thounthong P. Thin film flow of the water-based carbon nanotubes hybrid nanofluid under the magnetic effects. Heat Transf. 2020;49:3211–27.

    Article  Google Scholar 

  204. Hosseini SM, Safaei MR, Goodarzi M, Alrashed AAAA, Nguyen TK. New temperature, interfacial shell dependent dimensionless model for thermal conductivity of nanofluids. Int J Heat Mass Transf. 2017;114:207–10.

    Article  CAS  Google Scholar 

  205. Cabaleiro D, Gracia-Fernández C, Legido JL, Lugo L. Specific heat of metal oxide nanofluids at high concentrations for heat transfer. Int J Heat Mass Transf. 2015;88:872–9.

    Article  CAS  Google Scholar 

  206. Mahian O, Kianifar A, Heris SZ, Wongwises S. Natural convection of silica nanofluids in square and triangular enclosures: theoretical and experimental study. Int J Heat Mass Transf. 2016;99:792–804.

    Article  CAS  Google Scholar 

  207. Goshayeshi HR, Safaei MR, Goodarzi M, Dahari M. Particle size and type effects on heat transfer enhancement of Ferro-nanofluids in a pulsating heat pipe. Powder Technol. 2016;301:1218–26.

    Article  CAS  Google Scholar 

  208. Ma M, Zhai Y, Yao P, Li Y, Wang H. Effect of surfactant on the rheological behavior and thermophysical properties of hybrid nanofluids. Powder Technol. 2021;379:373–83.

    Article  CAS  Google Scholar 

  209. Sheikholeslami M, Bhatti MM. Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. Int J Heat Mass Transf. 2017;111:1039–49.

    Article  CAS  Google Scholar 

  210. Bhunia MM, Panigrahi K, Das S, Chattopadhyay KK, Chattopadhyay P. Amorphous graphene: transformer oil nanofluids with superior thermal and insulating properties. Carbon. 2018;139:1010–9.

    Article  CAS  Google Scholar 

  211. Li YH, Qu W, Feng JC. Temperature dependence of thermal conductivity of nanofluids. Chin Phys Lett. 2008;25:3319–22.

    Article  CAS  Google Scholar 

  212. Clancy TC, Gates TS. Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites. Polymer. 2006;47:5990–6.

    Article  CAS  Google Scholar 

  213. Xue QZ. Model for thermal conductivity of carbon nanotube-based composites. Physica B. 2005;368:302–7.

    Article  CAS  Google Scholar 

  214. Patel HE, Sundararajan T, Pradeep T, Dasgupta A, Dasgupta N, Das SK. A micro-convection model for thermal conductivity of nanofluids. Pramana. 2005;65:863–9.

    Article  CAS  Google Scholar 

  215. Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. J Nanopart Res. 2004;6:577–88.

    Article  Google Scholar 

  216. Patel HE, Anoop KB, Sundararajan T, Das SK. Model for thermal conductivity of CNT-nanofluids. Bull Mater Sci. 2008;31:387–90.

    Article  CAS  Google Scholar 

  217. Vajjha RS, Das DK, Kulkarni DP. Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids. Int J Heat Mass Transf. 2010;53:4607–18.

    Article  CAS  Google Scholar 

  218. Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res. 2003;5:167–71.

    Article  CAS  Google Scholar 

  219. Nan C-W, Birringer R, Clarke DR, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys. 1997;81:6692–9.

    Article  CAS  Google Scholar 

  220. Bruggeman DAG. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys. 1935;416:665–79.

    Article  Google Scholar 

  221. Murshed SMS, Leong KC, Yang C. Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci. 2008;47:560–8.

    Article  CAS  Google Scholar 

  222. Gao Y, Wang H, Sasmito AP, Mujumdar AS. Measurement and modeling of thermal conductivity of graphene nanoplatelet water and ethylene glycol base nanofluids. Int J Heat Mass Transf. 2018;123:97–109.

    Article  CAS  Google Scholar 

  223. Corcione M. Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls. Int J Therm Sci. 2010;49:1536–46.

    Article  CAS  Google Scholar 

  224. Maïga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N. Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow. 2005;26:530–46.

    Article  Google Scholar 

  225. Khanafer K, Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf. 2011;54:4410–28.

    Article  CAS  Google Scholar 

  226. Chon CH, Kihm KD, Lee SP, Choi SUS. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87:153107.

    Article  Google Scholar 

  227. Azmi WH, Sharma KV, Mamat R, Anuar S. Turbulent forced convection heat transfer of nanofluids with twisted tape insert in a plain tube. Energy Procedia. 2014;52:296–307.

    Article  CAS  Google Scholar 

  228. von Smoluchowski M. Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Annalen der Physik. 1906;326:756–80. https://doi.org/10.1002/andp.19063261405

  229. Frankel NA, Acrivos A. On the viscosity of a concentrated suspension of solid spheres. Chem Eng Sci. 1967;22:847–53.

    Article  Google Scholar 

  230. Lundgren TS. Slow flow through stationary random beds and suspensions of spheres. J Fluid Mech. 1972;51:273–99.

    Article  Google Scholar 

  231. Krieger IM, Dougherty TJ. A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol. 1959;3:137–52.

    Article  CAS  Google Scholar 

  232. Eilers H. Die Viskosität von Emulsionen hochviskoser Stoffe als Funktion der Konzentration. Kolloid-Zeitschrift. 1941;97:313–21.

    Article  CAS  Google Scholar 

  233. Saitô N. Concentration dependence of the viscosity of high polymer solutions. I. J Phys Soc Jpn. 1950;5:4–8.

    Article  Google Scholar 

  234. Vand V. Viscosity of solutions and suspensions. I: theory. J Phys Colloid Chem. 1948;52:277–99.

    Article  CAS  PubMed  Google Scholar 

  235. Tseng WJ, Lin KC. Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Mater Sci Eng A. 2003;355:186–92.

    Article  Google Scholar 

  236. Graham AL. On the viscosity of suspensions of solid spheres. Appl Sci Res. 1981;37:275–86.

    Article  CAS  Google Scholar 

  237. Masoumi N, Sohrabi N, Behzadmehr A. A new model for calculating the effective viscosity of nanofluids. J Phys D Appl Phys. 2009;42:055501.

    Article  Google Scholar 

  238. Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52:789–93.

    Article  CAS  Google Scholar 

  239. Chen H, Ding Y, Lapkin A. Rheological behaviour of nanofluids containing tube/rod-like nanoparticles. Powder Technol. 2009;194:132–41.

    Article  CAS  Google Scholar 

  240. Green MS. Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J Chem Phys. 1954;22:398–413.

    Article  CAS  Google Scholar 

  241. Kubo R. Statistical mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J Phys Soc Jpn. 1957;12:570–86.

    Article  Google Scholar 

  242. Schelling PK, Phillpot SR, Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys Rev B Condens Matter Mater Phys. 2002;65:1–12.

    Article  Google Scholar 

  243. Kurt H, Kayfeci M. Prediction of thermal conductivity of ethylene glycol-water solutions by using artificial neural networks. Appl Energy. 2009;86:2244–8.

    Article  CAS  Google Scholar 

  244. Papari MM, Yousefi F, Moghadasi J, Karimi H, Campo A. Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks. Int J Therm Sci. 2011;50:44–52.

    Article  CAS  Google Scholar 

  245. Longo GA, Zilio C, Ortombina L, Zigliotto M. Application of Artificial Neural Network (ANN) for modeling oxide-based nanofluids dynamic viscosity. Int Commun Heat Mass Transf. 2017;83:8–14.

    Article  CAS  Google Scholar 

  246. Di Nicola G, Ciarrocchi E, Coccia G, Pierantozzi M. Correlations of thermal conductivity for liquid refrigerants at atmospheric pressure or near saturation. Int J Refrig. 2014;45:168–76.

    Article  Google Scholar 

  247. Hemmat Esfe M, Motahari K, Sanatizadeh E, Afrand M, Rostamian H, Reza Hassani Ahangar M. Estimation of thermal conductivity of CNTs-water in low temperature by artificial neural network and correlation. Int Commun Heat Mass Transf. 2016;76:376–81.

    Article  CAS  Google Scholar 

  248. Akhgar A, Toghraie D, Sina N, Afrand M. Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/Water-ethylene glycol hybrid nanofluid. Powder Technol. 2019;355:602–10.

    Article  CAS  Google Scholar 

  249. Esfe MH, Esfandeh S, Afrand M, Rejvani M, Rostamian SH. Experimental evaluation, new correlation proposing and ANN modeling of thermal properties of EG based hybrid nanofluid containing ZnO-DWCNT nanoparticles for internal combustion engines applications. Appl Therm Eng. 2018;133:452–63.

    Article  CAS  Google Scholar 

  250. Hemmat Esfe M, Afrand M. Mathematical and artificial brain structure-based modeling of heat conductivity of water based nanofluid enriched by double wall carbon nanotubes. Physica A. 2020;540:120766.

    Article  CAS  Google Scholar 

  251. Vafaei M, Afrand M, Sina N, Kalbasi R, Sourani F, Teimouri H. Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks. Physica E. 2017;85:90–6.

    Article  CAS  Google Scholar 

  252. Alrashed AAAA, Gharibdousti MS, Goodarzi M, de Oliveira LR, Safaei MR, Bandarra Filho EP. Effects on thermophysical properties of carbon based nanofluids: experimental data, modelling using regression, ANFIS and ANN. Int J Heat Mass Transf. 2018;125:920–32.

    Article  CAS  Google Scholar 

  253. Maddah H, Aghayari R, Ahmadi MH, Rahimzadeh M, Ghasemi N. Prediction and modeling of MWCNT/Carbon (60/40)/SAE 10 W 40/SAE 85 W 90(50/50) nanofluid viscosity using artificial neural network (ANN) and self-organizing map (SOM). J Therm Anal Calorim. 2018;134:2275–86.

    Article  CAS  Google Scholar 

  254. Moghaddari M, Yousefi F. Syntheses, characterization, measurement and modeling viscosity of nanofluids containing OH-functionalized MWCNTs and their composites with soft metal (Ag, Au and Pd) in water, ethylene glycol and water/ethylene glycol mixture. J Therm Anal Calorim. 2019;135:83–96.

    Article  CAS  Google Scholar 

  255. Maré T, Halelfadl S, Sow O, Estellé P, Duret S, Bazantay F. Comparison of the thermal performances of two nanofluids at low temperature in a plate heat exchanger. Exp Therm Fluid Sci. 2011;35:1535–43.

    Article  Google Scholar 

  256. Syam Sundar L, Otero-Irurueta G, Singh MK, Sousa ACM. Heat transfer and friction factor of multi-walled carbon nanotubes-Fe3O4 nanocomposite nanofluids flow in a tube with/without longitudinal strip inserts. Int J Heat Mass Transf. 2016;100:691–703.

    Article  CAS  Google Scholar 

  257. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21:58–64.

    Article  CAS  Google Scholar 

  258. Chougule SSS, Nirgude VV, Gharge PD, Mayank M, Sahu SKK. Heat transfer enhancements of low volume concentration CNT/water nanofluid and wire coil inserts in a circular tube. Energy Procedia. 2016;90:552–8.

    Article  CAS  Google Scholar 

  259. Sarafraz MM, Hormozi F. Heat transfer, pressure drop and fouling studies of multi-walled carbon nanotube nano-fluids inside a plate heat exchanger. Exp Therm Fluid Sci. 2016;72:1–11.

    Article  CAS  Google Scholar 

  260. Nazari M, Karami M, Ashouri M. Comparing the thermal performance of water, Ethylene Glycol, Alumina and CNT nanofluids in CPU cooling: experimental study. Exp Therm Fluid Sci. 2014;57:371–7.

    Article  CAS  Google Scholar 

  261. Qu J, Tian M, Han X, Zhang R, Wang Q. Photo-thermal conversion characteristics of MWCNT-H2O nanofluids for direct solar thermal energy absorption applications. Appl Therm Eng. 2017;124:486–93.

    Article  CAS  Google Scholar 

  262. Said Z. Thermophysical and optical properties of SWCNTs nanofluids. Int Commun Heat Mass Transf. 2016;78:207–13.

    Article  CAS  Google Scholar 

  263. Delfani S, Karami M, Akhavan-Behabadi MA, Behabadi MAA. Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid. Renew Energy. 2016;87:754–64.

    Article  CAS  Google Scholar 

  264. Kasaeian A, Daneshazarian R, Rezaei R, Pourfayaz F, Kasaeian G. Experimental investigation on the thermal behavior of nanofluid direct absorption in a trough collector. J Clean Prod. 2017;158:276–84.

    Article  CAS  Google Scholar 

  265. Chen W, Zou C, Li X, Liang H. Application of recoverable carbon nanotube nanofluids in solar desalination system: an experimental investigation. Desalination. 2019;451:92–101.

    Article  CAS  Google Scholar 

  266. Mahbubul IM, Khan MMA, Ibrahim NI, Ali HM, Al-Sulaiman FA, Saidur R. Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector. Renew Energy. 2018;121:36–44.

    Article  CAS  Google Scholar 

  267. Verma SK, Tiwari AK, Tiwari S, Chauhan DS. Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid. Sol Energy. 2018;167:231–41.

    Article  CAS  Google Scholar 

  268. Verma SK, Tiwari AK, Chauhan DS. Experimental evaluation of flat plate solar collector using nanofluids. Energy Convers Manag. 2017;134:103–15.

    Article  CAS  Google Scholar 

  269. Said Z, Saidur R, Rahim NA, Alim MA. Analyses of exergy efficiency and pumping power for a conventional flat plate solar collector using SWCNTs based nanofluid. Energy Build. 2014;78:1–9.

    Article  Google Scholar 

  270. Yousefi T, Veisy F, Shojaeizadeh E, Zinadini S. An experimental investigation on the effect of MWCNT-H2O nanofluid on the efficiency of flat-plate solar collectors. Exp Therm Fluid Sci. 2012;39:207–12.

    Article  CAS  Google Scholar 

  271. Said Z, Saidur R, Sabiha MA, Rahim NA, Anisur MR. Thermophysical properties of Single Wall Carbon Nanotubes and its effect on exergy efficiency of a flat plate solar collector. Sol Energy. 2015;115:757–69.

    Article  CAS  Google Scholar 

  272. Chougule SS, Sahu SK, Pise AT. Thermal performance of two phase thermosyphon flat-plate solar collectors using nanofluid. J Sol Energy Eng. 2014;136:014503.

    Article  Google Scholar 

  273. Faizal M, Saidur R, Mekhilef S. Potential of size reduction of flat-plate solar collectors when applying MWCNT nanofluid. IOP Conf Ser Earth Environ Sci. 2013;16:012004.

    Article  Google Scholar 

  274. Vijayakumaar SC, Lakshmi Shankar R, Babu K. Effect of CNT-H2O nanofluid on the performance of solar flat plate collector-an experimental investigation. In: Proceedings of the international conference on ‘advanced nanomaterials and emerging engineering technologies’, ICANMEET 2013. 2013;197–9.

  275. Sadirpour S. First and second laws analysis and optimization of a solar absorber; using insulator mixers and MWCNTs nanoparticles. Glob J Res Eng A Mech Mech Eng. 2017;17:37–48.

  276. Verma S, Tiwari A. Experimental evaluation of flat plate solar collector using nanofluids. Energy Convers Manag. 2017;134:103–15.

    Article  CAS  Google Scholar 

  277. Eltaweel M, Abdel-Rehim AA. Energy and exergy analysis of a thermosiphon and forced-circulation flat-plate solar collector using MWCNT/Water nanofluid. Case Stud Therm Eng. 2019;14:100416.

    Article  Google Scholar 

  278. Dugaria S, Bortolato M, Del Col D. Modelling of a direct absorption solar receiver using carbon based nanofluids under concentrated solar radiation. Renew Energy. 2018;128:495–508.

    Article  CAS  Google Scholar 

  279. Luo Z, Wang C, Wei W, Xiao G, Ni M. Performance improvement of a nanofluid solar collector based on direct absorption collection (DAC) concepts. Int J Heat Mass Transf. 2014;75:262–71.

    Article  Google Scholar 

  280. Karami M, Akhavan Bahabadi MA, Delfani S, Ghozatloo A. A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Sol Energy Mat Sol Cells. 2014;121:114–8.

    Article  CAS  Google Scholar 

  281. Otanicar TP, Phelan PE, Prasher RS, Rosengarten G, Taylor RA. Nanofluid-based direct absorption solar collector. J Renew Sustain Energy. 2010;2:033102.

    Article  Google Scholar 

  282. Hordy N, Rabilloud D, Meunier J-LL, Coulombe S. High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors. Sol Energy. 2014;105:82–90.

    Article  CAS  Google Scholar 

  283. Beicker CLL, Amjad M, Bandarra Filho EP, Wen D. Experimental study of photothermal conversion using gold/water and MWCNT/water nanofluids. Sol Energy Mater Sol Cells. 2018;188:51–65.

    Article  CAS  Google Scholar 

  284. Choi TJ, Jang SP, Kedzierski MA. Effect of surfactants on the stability and solar thermal absorption characteristics of water-based nanofluids with multi-walled carbon nanotubes. Int J Heat Mass Transf. 2018;122:483–90.

    Article  CAS  Google Scholar 

  285. Sabiha MA, Saidur R, Hassani S, Said Z, Mekhilef S. Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids. Energy Convers Manag. 2015;105:1377–88.

    Article  CAS  Google Scholar 

  286. Tong Y, Kim J, Cho H. Effects of thermal performance of enclosed-type evacuated U-tube solar collector with multi-walled carbon nanotube/water nanofluid. Renew Energy. 2015;83:463–73.

    Article  CAS  Google Scholar 

  287. Yadav A, Bajpai VK. An experimental study on evacuated tube solar collector for heating of air in India. World Acad Sci Eng Technol. 2011;79:81–6.

    Google Scholar 

  288. Kim H, Ham J, Park C, Cho H. Theoretical investigation of the efficiency of a U-tube solar collector using various nanofluids. Energy. 2016;94:497–507.

    Article  CAS  Google Scholar 

  289. Kasaeian A, Daneshazarian R, Pourfayaz F. Comparative study of different nanofluids applied in a trough collector with glass–glass absorber tube. J Mol Liq. 2017;234:315–23.

    Article  CAS  Google Scholar 

  290. Kasaeian A, Daviran S, Azarian RD, Rashidi A. Performance evaluation and nanofluid using capability study of a solar parabolic trough collector. Energy Convers Manag. 2015;89:368–75.

    Article  CAS  Google Scholar 

  291. Mwesigye A, Yılmaz İH, Meyer JP. Numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector using SWCNTs-Therminol®VP-1 nanofluid. Renew Energy. 2018;119:844–62.

    Article  CAS  Google Scholar 

  292. Hassani S, Saidur R, Mekhilef S, Taylor RA. Environmental and exergy benefit of nanofluid-based hybrid PV/T systems. Energy Convers Manag. 2016;123:431–44.

    Article  CAS  Google Scholar 

  293. Hjerrild NE, Mesgari S, Crisostomo F, Scott JA, Amal R, Taylor RA. Hybrid PV/T enhancement using selectively absorbing Ag–SiO2/carbon nanofluids. Sol Energy Mater Sol Cells. 2016;147:281–7.

    Article  CAS  Google Scholar 

  294. Wang Y, Tang B, Zhang S. Single-walled carbon nanotube/phase change material composites: sunlight-driven, reversible, form-stable phase transitions for solar thermal energy storage. Adv Func Mater. 2013;23:4354–60.

    Article  CAS  Google Scholar 

  295. Aramesh M, Pourfayaz F, Kasaeian A. Numerical investigation of the nanofluid effects on the heat extraction process of solar ponds in the transient step. Sol Energy. 2017;157:869–79.

    Article  CAS  Google Scholar 

  296. Lee SB, Lee JH, Bae GN. Size response of an SMPS-APS system to commercial multi-walled carbon nanotubes. J Nanopart Res. 2010;12:501–12.

    Article  CAS  Google Scholar 

  297. Park EJ, Cho WS, Jeong J, Yi J, Choi K, Park K. Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology. 2009;259:113–21.

    Article  CAS  PubMed  Google Scholar 

  298. Di Sotto A, Chiaretti M, Carru GA, Bellucci S, Mazzanti G. Multi-walled carbon nanotubes: lack of mutagenic activity in the bacterial reverse mutation assay. Toxicol Lett. 2009;184:192–7.

    Article  PubMed  Google Scholar 

  299. Cavalieri EL, Rogan EG. The approach to understanding aromatic hydrocarbon carcinogenesis. The central role of radical cations in metabolic activation. Pharmacol Ther. 1992;55:183–99.

    Article  CAS  PubMed  Google Scholar 

  300. Boyd JT, Doll R, Faulds JS, Leiper J. Cancer of the lung in iron ore (haematite) miners. Br J Ind Med. 1970;27:97–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Icso J, Szollosova M, Sorahan T. Lung cancer among iron ore miners in east Slovakia: a case-control study. Occup Environ Med. 1994;51:642–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Venkatachalam MA, Patel YJ, Kreisberg JI, Weinberg JM. Energy thresholds that determine membrane integrity and injury in a renal epithelial cell line (LLC-PK1). Relationships to phospholipid degradation and unesterified fatty acid accumulation. J Clin Investig. 1988;81:745–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of mechanical engineering, Galgotias College of engineering and technology, Greater Noida for providing research infrastructure and support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Yadav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, D., Sanserwal, M. A comprehensive review of the effects of various factors on the thermal conductivity and rheological characteristics of CNT nanofluids. J Therm Anal Calorim 148, 1723–1763 (2023). https://doi.org/10.1007/s10973-022-11821-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11821-7

Keywords

Navigation