Skip to main content

Advertisement

Log in

Evaluation of testosterone compatibility with different excipients for the development of a self-emulsifying drug delivery system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Testosterone is a cholesterol-derived steroidal hormone responsible for male sexual characteristics. Besides undergoing intense hepatic and intestinal metabolism, it presents low aqueous solubility and low intestinal permeability. Various strategies have been investigated to improve the bioavailability of poorly water-soluble such as testosterone, including the use of lipid systems. The main goal of this work was to carry out a pre-formulation study for the development a liquid self-emulsifying drug delivery system (L-SEDDS) with testosterone. The compatibility of the drug with oils and surfactants was investigated using DSC, TG, FTIR and isothermal stress test (IST). Interactions with testosterone were identified for oleic acid, Span 80 and Castor oil, in which greater changes were observed in the DSC and DTG thermal profiles. The incompatibility of the testosterone with these excipients was confirmed by the IST after 15 or 30 days of storage at 50 °C. A phase diagram was constructed using different proportions (w/w) of Captex 355, Tween 80 and Span 85. Formulations were characterized for size, PdI and zeta potential. F4 showed the highest zeta potential values (− 30.70 ± 2.28 mV and − 33.25 ± 1.77 mV) and lowest PdI values (0.232 ± 0.001 and 0.244 ± 0.011) (before and after drug incorporation, respectively). The pre-formulation studies enabled a rational selection of excipients for the development of L-SEDDS containing testosterone, thus reinforcing the importance and applicability of analytical and thermo-analytical techniques in the development of new formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Luetjens CM, Weinbauer GF. Testosterone: biosynthesis, transport, metabolism and (non-genomic) actions. In: Nieschlag E, Behre HM, editors. Testosterone action, deficiency, substitution. 4th ed. New York: Cambridge University Press; 2012. p. 1–591.

    Google Scholar 

  2. Hackett G, Kirby M, Edwards D, et al. British society for sexual medicine guidelines on adult testosterone deficiency, with statements for UK practice. J Sex Med. 2017;14:1504–23.

    Article  Google Scholar 

  3. Okimoto K, Rajewski RA, Stella VJ. Release of testosterone from an osmotic pump tablet utilizing (SBE)(7m)-β-cyclodextrin as both a solubilizing and an osmotic pump agent. J Control Release. 1999;58(1):29–38.

    Article  CAS  Google Scholar 

  4. Eixarch H, Haltner-Ukomadu E, Beisswenger C, Bock U. Drug delivery to the lung: Permeability and physicochemical characteristics of drugs as the basis for a pulmonary biopharmaceutical classification system (pBCS). J Epithel Biol Pharmacol. 2010;3:1–14.

    CAS  Google Scholar 

  5. Frey H, Aakvaag A, Saanum D, Falch J. Bioavailability of oral testosterone in males. Eur J Clin Pharmacol. 1979;16(5):345–9.

    Article  CAS  Google Scholar 

  6. Täuber U, Schröder K, Düsterberg B, Matthes H. Absolute bioavailability of testosterone after oral administration of testosterone-undecanoate and testosterone. Eur J Drug Metab Pharmacokinet. 1986;11(2):145–9.

    Article  Google Scholar 

  7. Daggett PR, Wheeler MJ, Nabarro JDN. Oral testosterone, a reappraisal. Horm Res. 1978;9:121–9.

    Article  CAS  Google Scholar 

  8. Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6:231–48.

    Article  CAS  Google Scholar 

  9. Dahan A, Hoffman A. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. J Control Release. 2008;129(1):1–10.

    Article  CAS  Google Scholar 

  10. Serajuddin ATM. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007;59(7):603–16.

    Article  CAS  Google Scholar 

  11. Joshi JT. A review on micronization techniques. J Pharm Sci Technol. 2011;3(7):651–81.

    CAS  Google Scholar 

  12. Vandana KR, Prasanna Raju Y, Harini Chowdary V, Sushma M, Vijay KN. An overview on in situ micronization technique—an emerging novel concept in advanced drug delivery. Saudi Pharm J. 2014;22(4):283–9.

    Article  CAS  Google Scholar 

  13. Cappello B, Di Maio C, Iervolino M, Miro A. Improvement of solubility and stability of valsartan by hydroxypropyl-β-cyclodextrin. J Incl Phenom Macrocycloc Chem. 2006;54(3–4):289–94.

    Article  CAS  Google Scholar 

  14. Modi A, Tayade P. Enhancement of dissolution profile by solid dispersion (kneading) technique. AAPS PharmSciTech. 2006;7(3):1–6.

    Article  Google Scholar 

  15. Dalvi PB, Gerange AB, Ingale PR. Solid dispersion: strategy to enhance solubility. J Drug Deliv Ther. 2015;5(2):20–8.

    CAS  Google Scholar 

  16. Venkatesh G, Majid MIA, Mansor SM, Nair NK, Croft SL, Navaratnam V. In vitro and in vivo evaluation of self-microemulsifying drug delivery system of buparvaquone. Drug Dev Ind Pharm. 2010;36(6):735–45.

    Article  CAS  Google Scholar 

  17. Burra M, Jukanti R, Janga KY, et al. Enhanced intestinal absorption and bioavailability of raloxifene hydrochloride via lyophilized solid lipid nanoparticles. Adv Powder Technol. 2013;24(1):393–402.

    Article  CAS  Google Scholar 

  18. Muchow M, Maincent P, Müller RH, Keck CM. Testosterone undecanoate—increase of oral bioavailability by nanostructured lipid carriers (NLC). J Pharm Technol Drug Res. 2013;2:1–10.

    Article  Google Scholar 

  19. Hua Y, Li W, Cheng Z, et al. Solidification of nanostructured lipid carriers loaded testosterone undecanoate: in vivo and in vitro study. Drug Res. 2018;68:457–64.

    Article  CAS  Google Scholar 

  20. Jo K, Kim H, Khadka P, et al. Enhanced intestinal lymphatic absorption of saquinavir through supersaturated self-microemulsifying drug delivery systems. Asian J Pharm Sci. 2019;16(58):1–11.

    Google Scholar 

  21. Zanchetta B, Chaud MV, Helena M, Santana A. SEDDS: Nanocarrier system for a new cardiac dysfunction drug. Eur J Biomed Pharm Sci. 2015;2(7):96–111.

    CAS  Google Scholar 

  22. Sharma S, Sharma AD, Naseer MA, Singh R. Formulation and evaluation of self emulsifying drug delivery system of ibuprofen using castor oil. Int J Pharm Pharm Sci. 2011;3(4):299–302.

    CAS  Google Scholar 

  23. Patil SL, Pharm IJ, Sci B, Nigade PM, Tiwari SS. Self emulsifying drug delivery system (SEDDS): a review. Int J Pharm Biol Sci. 2012;2(2):42–52.

    Google Scholar 

  24. Bharate SS, Bharate SB, Bajaj AN. Interactions and incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: a comprehensive review. J Excipients Food Chem. 2010;1(3):3–26.

    CAS  Google Scholar 

  25. Silva LAD, Teixeira FV, Serpa RC, et al. Evaluation of carvedilol compatibility with lipid excipients for the development of lipid-based drug delivery systems. J Therm Anal Calorim. 2016;123(3):2337–44.

    Article  CAS  Google Scholar 

  26. Veras KS, Fachel FNS, Pittol V, et al. Compatibility study of rosmarinic acid with excipients used in pharmaceutical solid dosage forms using thermal and non-thermal techniques. Saudi Pharm J. 2019;27(8):1138–45.

    Article  CAS  Google Scholar 

  27. Ujhelyi Z, Vecsernyés M, Fehér P, et al. Physico-chemical characterization of self-emulsifying drug delivery systems. Drug Discov Today Technol 2018:81–86.

  28. Borhade V, Pathak S, Sharma S, Patravale V. Clotrimazole nanoemulsion for malaria chemotherapy. Part I: preformulation studies, formulation design and physicochemical evaluation. Int J Pharm. 2012;431:138–48.

    Article  CAS  Google Scholar 

  29. Li F, Hu R, Wang B, et al. Self-microemulsifying drug delivery system for improving the bioavailability of huperzine A by lymphatic uptake. Acta Pharm Sin B. 2017;7(3):353–60.

    Article  Google Scholar 

  30. Swerdloff RS, Dudley RE. A new oral testosterone undecanoate therapy comes of age for the treatment of hypogonadal men. Ther Adv Urol. 2020;12:1–16.

    Article  Google Scholar 

  31. Silva LAD, Cintra ER, Alonso ECP, et al. Selection of excipients for the development of carvedilol loaded lipid-based drug delivery systems. J Therm Anal Calorim. 2017;130(3):1593–604.

    Article  CAS  Google Scholar 

  32. Teixeira FV, Alves GL, Ferreira MH, Taveira SF, da Cunha Filho MSS, Marreto RN. Preformulation studies to guide the development of raloxifene lipid-based delivery systems. J Therm Anal Calorim. 2018;132(1):365–71.

    Article  CAS  Google Scholar 

  33. Kumar N, Goindi S, Saini B. Thermal characterization and compatibility studies of itraconazole and excipients for development of solid lipid nanoparticles. J Therm Anal Calorim. 2014;115:2375–83.

    Article  CAS  Google Scholar 

  34. Khoo SM, Humberstone AJ, Porter CJh, Edwards GA, Charman WN. Formulation design and bioavailability assessment of lipidic self- emulsifying formulations of halofantrine. Int J Pharm. 1998;167(1–2):155–64.

    Article  CAS  Google Scholar 

  35. Grove M, Anette M, Nielsen JL, Pedersen GP. Bioavailability of seocalcitol II : Development and characterisation of self-microemulsifying drug delivery systems ( SMEDDS ) for oral administration containing medium and long chain triglycerides. Eur J Pharm Sci. 2006;28:233–42.

    Article  CAS  Google Scholar 

  36. Balata GF, Essa EA, Shamardl HA, Zaidan SH, Abourehab MAS. Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol. Drug Des Devel Ther. 2016;10:117–28.

    Article  CAS  Google Scholar 

  37. Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58(3):173–82.

    Article  Google Scholar 

  38. Pouton CW, Porter CJH. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008;60(6):625–37.

    Article  CAS  Google Scholar 

  39. Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems—an overview. Acta Pharm Sin B. 2013;3(6):361–72.

    Article  Google Scholar 

  40. Land LM, Li P, Bummer PM. The influence of water content of triglyceride oils on the solubility of steroids. Pharm Res. 2005;22(5):784–8.

    Article  CAS  Google Scholar 

  41. Kalkura SN, Devanarayanan S. Crystal growth of steroids in silica gel: testosterone. J Cryst Growth. 1989;94(3):810–3.

    Article  CAS  Google Scholar 

  42. Bhowmik BB, Sa B, Mukherjee A. Preparation and in vitro characterization of slow release testosterone nanocapsules in alginates. Acta Pharm. 2006;56:417–29.

    CAS  Google Scholar 

  43. Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. 2009.

  44. Zhao H, Park DW, Kim SK, Lee CH, Kim DD. The effects of pressure-sensitive adhesives and solubilizers on the skin permeation of testosterone from a matrix-type transdermal delivery system. Drug Dev Ind Pharm. 2002;28(9):1125–31.

    Article  CAS  Google Scholar 

  45. Faramarzi MA, Yazdi MT, Amini M, Mohseni FA. Microbial production of testosterone and testololactone in the culture of Aspergillus terreus. World J Microbiol Biotechnol. 2004;20:657–60.

    Article  CAS  Google Scholar 

  46. Wasylaschuk WR, Harmon PA, Wagner G, et al. Evaluation of hydroperoxides in common pharmaceutical excipients. J Pharm Sci. 2007;96(1):106–16.

    Article  CAS  Google Scholar 

  47. Choe E, Min DB. Mechanisms and factors for edible oil oxidation. Inst Food Technol. 2006;5:169–86.

    CAS  Google Scholar 

  48. Qi B, Zhang Q, Sui X, Wang Z, Li Y, Jiang L. Differential scanning calorimetry study—assessing the influence of composition of vegetable oils on oxidation. Food Chem. 2016;194:601–7.

    Article  CAS  Google Scholar 

  49. Dixit AR, Rajput SJ, Patel SG. Preparation and bioavailability assessment of SMEDDS containing valsartan. AAPS PharmSciTech. 2010;11(1):314–21.

    Article  CAS  Google Scholar 

  50. Quan D, Gui-xia X, Xiang-gen W. Studies on preparation and absolute bioavailability of a self-emulsifying system containing Puerarin. Chem Pharm Bull. 2007;55(5):800–3.

    Article  CAS  Google Scholar 

  51. Balakumar K, Raghavan CV, Selvan NT, Prasad RH, Abdu S. Self nanoemulsifying drug delivery system (SNEDDS) of Rosuvastatin calcium: Design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf B Biointerfaces. 2013;112:337–43.

    Article  CAS  Google Scholar 

  52. Wei L, Sun P. Preparation and evaluation of SEDDS and SMEDDS containing carvedilol. Drug Dev Ind Pharm. 2005;31:785–94.

    Article  CAS  Google Scholar 

  53. Agrawal AG, Kumar A, Gide PS. Colloids and Surfaces B : Biointerfaces Self emulsifying drug delivery system for enhanced solubility and dissolution of glipizide. Colloids Surf B Biointerfaces. 2015;126:553–60.

    Article  CAS  Google Scholar 

  54. Pujara ND. Self-emulsifying drug delivery system: a novel approach. Int J Curr Pharm Res. 2012;4(2):18–23.

    CAS  Google Scholar 

  55. Jeevana JB, Sreelakshmi K. Design and evaluation of self-nanoemulsifying drug delivery system of flutamide. J Young Pharm. 2011;3(1):4–8.

    Article  CAS  Google Scholar 

  56. Patel J, Patel A, Raval M, Sheth N. Formulation and development of a self-nanoemulsifying drug delivery system of irbesartan. J Adv Pharm Technol Res. 2011;2(1):1–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the following Brazilian research funding agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Pesquisas (FINEP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES – Finance code 001).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Bárbara Cristina Campos Ribeiro and Emilio Ramos Cintra. The first draft of the manuscript was written by Luís Antônio Dantas Silva and Danielle Guimarães Almeida Diniz. Resources and funding supporte by Eliana Martins Lima. All authors commented on previous versions of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Danielle Guimarães Almeida Diniz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 49320 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, B.C.C., Cintra, E.R., Lima, E.M. et al. Evaluation of testosterone compatibility with different excipients for the development of a self-emulsifying drug delivery system. J Therm Anal Calorim 148, 159–168 (2023). https://doi.org/10.1007/s10973-022-11751-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11751-4

Keywords

Navigation