Skip to main content
Log in

The preparation, stability and heat-collection efficiency of solar nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The energy crisis and environmental pollution have forced humanity to look for alternative and clean energy. Collecting solar energy by using solar nanofluids (NFs) due to their excellent photo-thermal properties has been popular. Since many literature focused on solar collectors rather than solar nanofluids, this paper was written to promote the commercialization of solar NFs by reviewing state-of-the-art advances in the preparation techniques, stability, and heat-collection efficiency of solar NFs. The first procedure is to prepare stable NFs, and the preparation techniques of NFs were briefly evaluated, including the one-step method, two-step method, post-treatment method, and phase transfer method. Then, the stability mechanism of NFs was elucidated from a microscopic perspective and the effect of the dielectric constant of base fluid, pH value, surfactant, the size, shape, and concentration of nanoparticles on the stability of NFs were explored. The heat-collection efficiency of solar NFs was also discussed. It is found that the unique optical properties of solar NFs effectively/significantly improved the absorption of solar radiation; meanwhile, the high thermal conductivity (TC) of solar NFs can also improve the efficiency of conversion and transmission of solar collectors. Finally, the knowledge gap and future challenges of solar NFs are summarized, and corresponding suggestions are put forward, hoping to promote the process of putting solar NFs into collectors for commercial use officially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

NFs:

Nanofluids

TC:

Thermal conductivity

CNTs:

Carbon nanotubes

EG:

Ethylene glycol

PWE:

Pulsed-wire evaporation

EEW:

Electro-explosive wire

DW:

Distilled water

NHS:

N-hydroxysuccinimide

SDBS:

Sodium dodecylbenzenesulfonate

CTAB:

Cetyltrimethylammonium bromide

SDS:

Sodium dodecylsulfate

IEP:

Isoelectric point

TX-100:

Triton X-100

GA:

Gum Arabic

TEM:

Transmission electron microscope

DLS:

Dynamic light scattering

TGA:

Thermo-gravimetric analysis

MWCNT:

Multi-walled carbon nanotubes

V :

Velocity of nanoparticles (μm s−1)

E :

Electric field strength (volts cm−1)

CCDs:

Charge-coupled devices

A λ :

Absorbance

I :

Intensity

l :

Optical path length

c :

Concentration

T λ :

Transmittance

R :

Radius of particles

X :

Distance between the rotation axis and a specific position in the centrifuge tube

g :

Gravity

d :

Diameter

D :

Translational diffusion coefficient

R H :

Dynamic radius of the fluid

K B :

Boltzmann constant

T :

Temperature

\(\zeta\) :

Zeta potential

\(\varepsilon\) :

Permittivity

\(\eta\) :

Viscosity

α :

Absorptivity

ω :

Angular velocity of the centrifuge

ρ :

Density

T :

Total potential energy

VdW :

Van der Waals

EP :

Repulsive potential

R :

Relative

0 :

Vacuum

i :

Incident

t :

Terminal

p :

Particle

b :

Base fluid

References

  1. Tembhare SP, Barai DP, Bhanvase BA. Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: a comprehensive review. Renew Sust Energy Rev. 2022;153:111738. https://doi.org/10.1016/j.rser.2021.111738.

    Article  CAS  Google Scholar 

  2. Shahzad M, Ma T, Jurasz J, Canales FA, Lin S, Ahmed S, et al. Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island. Renew Energy. 2021;164:1376–94. https://doi.org/10.1016/j.renene.2020.10.063.

    Article  Google Scholar 

  3. Kalvin R, Taweekun J, Maliwan K, Ali HM. Fabrication of catalytic converter with different materials and comparison with existing materials in addition to analysis of turbine installed at the exhaust of 4 stroke SI engine. Sustainability. 2021;13(18):10470.

    Article  CAS  Google Scholar 

  4. Sheikholeslami M. Analyzing melting process of paraffin through the heat storage with honeycomb configuration utilizing nanoparticles. J Energy Storage. 2022;52:104954. https://doi.org/10.1016/j.est.2022.104954.

    Article  Google Scholar 

  5. Rodriguez-Sanchez D, Belmonte JF, Izquierdo-Barrientos MA, Molina AE, Rosengarten G, Almendros-Ibáñez JA. Solar energy captured by a curved collector designed for architectural integration. Appl Energy. 2014;116:66–75.

    Article  Google Scholar 

  6. Tian Y, Zhao CY. A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy. 2013;104:538–53. https://doi.org/10.1016/j.apenergy.2012.11.051.

    Article  CAS  Google Scholar 

  7. Saidur R, Meng TC, Said Z, Hasanuzzaman M, Kamyar A. International journal of heat and mass transfer evaluation of the effect of nanofluid-based absorbers on direct solar collector. Int J Heat Mass Transf. 2012;55:5899–907. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.087.

    Article  CAS  Google Scholar 

  8. Ruhani B, Barnoon P, Toghraie D. Statistical investigation for developing a new model for rheological behavior of Silica – ethylene glycol / Water hybrid Newtonian nanofluid using experimental data. Physica A. 2019;525:616–27. https://doi.org/10.1016/j.physa.2019.03.119.

    Article  CAS  Google Scholar 

  9. Sajjad U, Sadeghianjahromi A, Muhammad H, Wang C. Enhanced pool boiling of dielectric and highly wetting liquids – A review on surface engineering. Appl Therm Eng. 2021;195:117074. https://doi.org/10.1016/j.applthermaleng.2021.117074.

    Article  Google Scholar 

  10. Sheikholeslami M. Solar Energy Materials and Solar Cells Numerical investigation of solar system equipped with innovative turbulator and hybrid nanofluid. Sol Energy Mater Sol Cells. 2022;243:111786. https://doi.org/10.1016/j.solmat.2022.111786.

    Article  CAS  Google Scholar 

  11. Masoud S, Yazdani A, Dhahad H, Alawee WH, Hesabi S, Norozpour F, et al. Effect of Ag, Au, TiO2 metallic / metal oxide nanoparticles in double-slope solar stills via thermodynamic and environmental analysis. J Clean Prod. 2021;311:127689. https://doi.org/10.1016/j.jclepro.2021.127689.

    Article  CAS  Google Scholar 

  12. Li Z, Barnoon P, Toghraie D, Balali R, Afrand M. Mixed convection of non-Newtonian nanofluid in an H-shaped cavity with cooler and heater cylinders filled by a porous material: two phase approach. Adv Powder Technol. 2019;30:2666–85. https://doi.org/10.1016/j.apt.2019.08.014.

    Article  CAS  Google Scholar 

  13. Kavusi H, Toghraie D. A comprehensive study of the performance of a heat pipe by using of various nanofluids. Adv Powder Technol. 2017;28:3074–84. https://doi.org/10.1016/j.apt.2017.09.022.

    Article  CAS  Google Scholar 

  14. Mashayekhi R, Khodabandeh E, Ali O, Davood A. CFD analysis of thermal and hydrodynamic characteristics of hybrid nanofluid in a new designed sinusoidal double-layered microchannel heat sink. J Therm Anal Calorim. 2018;134:2305–15. https://doi.org/10.1007/s10973-018-7671-3.

    Article  CAS  Google Scholar 

  15. Bazdar H, Toghraie D, Pourfattah F, Ali O, Hoang A, Nguyen M. Numerical investigation of turbulent flow and heat transfer of nanofluid inside a wavy microchannel with different wavelengths. J Therm Anal Calorim. 2020;139:2365–80. https://doi.org/10.1007/s10973-019-08637-3.

    Article  CAS  Google Scholar 

  16. Tariq HA, Anwar M, Malik A, Ali HM. Hydro-thermal performance of normal-channel facile heat sink using TiO2-H2O mixture (Rutile–Anatase) nanofluids for microprocessor cooling. J Therm Anal Calorim. 2021;145(5):2487–502. https://doi.org/10.1007/s10973-020-09838-x.

    Article  CAS  Google Scholar 

  17. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles . Asme Fed 231 (1995), 99–105.

  18. Liu J, Ye Z, Zhang L, Fang X, Zhang Z. Solar energy materials & solar cells a combined numerical and experimental study on graphene / ionic liquid nano fl uid based direct absorption solar collector. Sol Energy Mater Sol Cells. 2015;136:177–86. https://doi.org/10.1016/j.solmat.2015.01.013.

    Article  CAS  Google Scholar 

  19. Chen W, Chou H, Yang Y. Inverse estimation of the unknown base heat fl ux in irregular fi ns made of functionally graded materials. Int Commun Heat Mass Transf. 2017;87:157–63. https://doi.org/10.1016/j.icheatmasstransfer.2017.07.003.

    Article  Google Scholar 

  20. Sharaf OZ, Taylor RA, Abu-nada E. On the colloidal and chemical stability of solar nanofluids: from nanoscale interactions to recent advances. Phys Rep. 2020;867:1–84. https://doi.org/10.1016/j.physrep.2020.04.005.

    Article  CAS  Google Scholar 

  21. Anderson A, Brindhadevi K, Salmen SH, Alahmadi TA, Marouskova A, Sangeetha M, et al. Effects of nanofluids on the photovoltaic thermal system for hydrogen production via electrolysis process. Int J Hydrog Energy. 2022. https://doi.org/10.1016/j.ijhydene.2021.12.218.

    Article  Google Scholar 

  22. Abdelkareem MA, Maghrabie HM, Abo-Khalil AG, Adhari OHK, Sayed ET, Radwan A, et al. Battery thermal management systems based on nanofluids for electric vehicles. J Energy Storage. 2022;50:104385. https://doi.org/10.1016/j.est.2022.104385.

    Article  Google Scholar 

  23. Yang X, Zhao Z, Liu Y, Xing R, Sun Y. Simulation of nanofluid-cooled lithium-ion battery during charging: a battery connected to a solar cell. Int J Mech Sci. 2021;212:106836. https://doi.org/10.1016/j.ijmecsci.2021.106836.

    Article  Google Scholar 

  24. Gupta SK, Pradhan S. A review of recent advances and the role of nanofluid in solar photovoltaic thermal (PV/T) system. Mater Today Proc. 2021;44:782–91. https://doi.org/10.1016/j.matpr.2020.10.708.

    Article  CAS  Google Scholar 

  25. Jannen A, Chaabane M, Mhiri H, Bournot P. Performance enhancement of concentrated photovoltaic systems CPVS using a nanofluid optical filter. Case Studies Therm Eng. 2022;35:102081. https://doi.org/10.1016/j.csite.2022.102081.

    Article  Google Scholar 

  26. Sheikholeslami M, Ebrahimpour Z. International Journal of Thermal Sciences Thermal improvement of linear Fresnel solar system utilizing Al 2 O 3 -water nanofluid and multi-way twisted tape. Int J Therm Sci. 2022;176:107505. https://doi.org/10.1016/j.ijthermalsci.2022.107505.

    Article  CAS  Google Scholar 

  27. Hu G, Ning X, Hussain M, Sajjad U, Sultan M, Muhammad H, et al. Potential evaluation of hybrid nanofluids for solar thermal energy harvesting: a review of recent advances. Sust Energy Technol Assess. 2021;48:101651. https://doi.org/10.1016/j.seta.2021.101651.

    Article  Google Scholar 

  28. Sheikholeslami M, Farshad SA. Nanoparticles transportation with turbulent regime through a solar collector with helical tapes. Adv Powder Technol. 2022;33:103510. https://doi.org/10.1016/j.apt.2022.103510.

    Article  CAS  Google Scholar 

  29. Ahmed MS, Elsaid AM. Effect of hybrid and single nanofluids on the performance characteristics of chilled water air conditioning system. Appl Therm Eng. 2019;163:114398. https://doi.org/10.1016/j.applthermaleng.2019.114398.

    Article  CAS  Google Scholar 

  30. Sheikholeslami M, Said Z, Jafaryar M. Hydrothermal analysis for a parabolic solar unit with wavy absorber pipe and nano fl uid. Renew Energy. 2022;188:922–32. https://doi.org/10.1016/j.renene.2022.02.086.

    Article  CAS  Google Scholar 

  31. Sheikholeslami M, Jafaryar M, Gerdroodbary MB. Environmental Technology & Innovation Influence of novel turbulator on efficiency of solar collector system. Environ Technol Innov. 2022;26:102383. https://doi.org/10.1016/j.eti.2022.102383.

    Article  CAS  Google Scholar 

  32. Yang L, Hu Y. Toward TiO2 nanofluids—part 1: preparation and properties. Nanoscale Res Lett. 2017;12(1):1–21.

    Google Scholar 

  33. Yang L, Huang JN, Ji W, Mao M. Investigations of a new combined application of nanofluids in heat recovery and air purification. Powder Technol. 2020;360:956–66.

    Article  CAS  Google Scholar 

  34. Kumar P, Sarviya RM. Materials today : proceedings recent developments in preparation of nanofluid for heat transfer enhancement in heat exchangers: a review. Mater Today Proc. 2021;44:2356–61. https://doi.org/10.1016/j.matpr.2020.12.434.

    Article  CAS  Google Scholar 

  35. Jurčević M, Nižetić S, Arıcı M, Ocłoń P. Comprehensive analysis of preparation strategies for phase change nanocomposites and nanofluids with brief overview of safety equipment. J Clean Prod. 2020;274:122963.

    Article  Google Scholar 

  36. Wang G, Li Y, Wang E, Huang Q, Wang S, Li H. International journal of mining science and technology experimental study on preparation of nanoparticle-surfactant nanofluids and their effects on coal surface wettability. Int J Min Sci Technol. 2021. https://doi.org/10.1016/j.ijmst.2021.12.007.

    Article  Google Scholar 

  37. Yang L, Jiang W, Ji W, Mahian O, Bazri S, Sadri R. International journal of heat and mass transfer a review of heating / cooling processes using nanomaterials suspended in refrigerants and lubricants. Int J Heat Mass Transf. 2020;153:119611. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119611.

    Article  CAS  Google Scholar 

  38. Zhang J, Luo X, Wang L, Feng Z, Li T. Combined effect of electric field and nanofluid on bubble behaviors and heat transfer in flow boiling of minichannels. Powder Technol. 2022;408:117743. https://doi.org/10.1016/j.powtec.2022.117743.

    Article  CAS  Google Scholar 

  39. Rios MSBL, Rivera-solorio CI, Nigam KDP. An overview of sustainability of heat exchangers and solar thermal applications with nanofluids: a review organic rankine cycle. Renew Sust Energy Rev. 2021;142:110855. https://doi.org/10.1016/j.rser.2021.110855.

    Article  CAS  Google Scholar 

  40. Bakthavatchalam B, Habib K, Saidur R, Saha BB. Cooling performance analysis of nanofluid assisted novel photovoltaic thermoelectric air conditioner for energy efficient buildings. Appl Therm Eng. 2022. https://doi.org/10.1016/j.applthermaleng.2022.118691.

    Article  Google Scholar 

  41. Wahab A, Hassan A, Qasim MA, Ali HM, Babar H, Sajid MU. Solar energy systems–potential of nanofluids. J Mol Liq. 2019;289:111049.

    Article  CAS  Google Scholar 

  42. Borode A, Ahmed N, Olubambi P. A review of solar collectors using carbon-based nanofluids. J Clean Prod. 2019;241:118311. https://doi.org/10.1016/j.jclepro.2019.118311.

    Article  CAS  Google Scholar 

  43. Lee GJ, Kim CK, Lee MK, Rhee CK, Kim S, Kim C. Thermal conductivity enhancement of ZnO nanofluid using a one-step physical method. Thermochim Acta. 2012;542:24–7. https://doi.org/10.1016/j.tca.2012.01.010.

    Article  CAS  Google Scholar 

  44. Khoshvaght-aliabadi M, Eskandari M. Influence of twist length variations on thermal – hydraulic specifications of twisted-tape inserts in presence of Cu – water nanofluid. Exper Therm Fluid Sci. 2015;61:230–40. https://doi.org/10.1016/j.expthermflusci.2014.11.004.

    Article  CAS  Google Scholar 

  45. Zhu HT, Lin YS, Yin YS. A novel one-step chemical method for preparation of copper nanofluids. J Colloid Interface Sci. 2004;277(1):100–3.

    Article  CAS  Google Scholar 

  46. Zhu H, Zhang C, Liu S, Tang Y, Yin Y. Effects of nanoparticle clustering and alignment on thermal conductivities of Fe 3 O 4 aqueous nanofluids. Appl Phys Lett. 2006;89(2):023123.

    Article  Google Scholar 

  47. Chaturvedi KR, Sharma T. Journal of petroleum science and engineering rheological analysis and EOR potential of surfactant treated single-step silica nanofluid at high temperature and salinity. J Petrol Sci Eng. 2021;196:107704. https://doi.org/10.1016/j.petrol.2020.107704.

    Article  CAS  Google Scholar 

  48. Kiani MR, Meshksar M, Makarem MA, Rahimpour MR. Preparation, stability, and characterization of nanofluids. Berlin: Nanofluids and Mass Transfer Elsevier; 2022.

    Book  Google Scholar 

  49. Salari S, Jafari SM. Trends in food science & technology application of nanofluids for thermal processing of food products. Trends Food Sci Technol. 2020;97:100–13. https://doi.org/10.1016/j.tifs.2020.01.004.

    Article  CAS  Google Scholar 

  50. Pazdar S, Sartipzadeh O. Experimental investigation of water based nano fl uid containing copper nanoparticles across helical microtubes ☆. Int Commun Heat Mass Transf. 2016;70:84–92. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.006.

    Article  CAS  Google Scholar 

  51. Kumar SA, Meenakshi KS, Narashimhan BRV, Srikanth S, Arthanareeswaran GJMC. Synthesis and characterization of copper nanofluid by a novel one-step method. Mater Chem Phys. 2009;113(1):57–62.

    Article  CAS  Google Scholar 

  52. Salehi JM, Heyhat MM, Rajabpour A. Enhancement of thermal conductivity of silver nanofluid synthesized by a one-step method with the effect of polyvinylpyrrolidone on thermal behavior. Appl Phys Lett. 2013;102(23):231907.

  53. Singh AK, Raykar VS. Microwave synthesis of silver nanofluids with polyvinylpyrrolidone (PVP) and their transport properties. Colloid Polymer Sci. 2008;286(14):1667–73.

    Article  CAS  Google Scholar 

  54. Bönnemann H, Botha SS, Bladergroen B, Linkov VM. Monodisperse copper-and silver-nanocolloids suitable for heat-conductive fluids. Appl Organomet Chem. 2005;19(6):768–73.

    Article  Google Scholar 

  55. Teng T, Lin L, Yu C. Preparation and characterization of carbon nanofluids by using a revised water-assisted synthesis method. J Nanomater. 2013. https://doi.org/10.1155/2013/582304.

    Article  Google Scholar 

  56. Lo CH, Tsung TT, Chen LC, Su CH, Lin HM. Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SANSS). J Nanoparticle Res. 2005;7(2):313–20.

    Article  CAS  Google Scholar 

  57. Hung Y, Teng T, Lin B. Evaluation of the thermal performance of a heat pipe using alumina nanofluids. Exp Therm Fluid Sci. 2013;44:504–11. https://doi.org/10.1016/j.expthermflusci.2012.08.012.

    Article  CAS  Google Scholar 

  58. Agarwal R, Verma K, Kumar N, Kumar R. Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids. Appl Therm Eng. 2016;102:1024–36. https://doi.org/10.1016/j.applthermaleng.2016.04.051.

    Article  CAS  Google Scholar 

  59. Abareshi M, Goharshadi EK, Mojtaba S. Journal of magnetism and magnetic materials fabrication, characterization and measurement of thermal conductivity of Fe 3 O 4 nanofluids. J Magn Magn Mater. 2010;322:3895–901. https://doi.org/10.1016/j.jmmm.2010.08.016.

    Article  CAS  Google Scholar 

  60. Liu MS, Lin MCC, Huang IT, Wang CC. Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Commun Heat Mass Transf. 2005;32(9):1202–10.

    Article  CAS  Google Scholar 

  61. Kathiravan R, Kumar R, Gupta A, Chandra R. Preparation and pool boiling characteristics of copper nanofluids over a flat plate heater. Int J Heat Mass Transf. 2010;53:1673–81. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.022.

    Article  CAS  Google Scholar 

  62. Qu J, Wu H, Cheng P. Thermal performance of an oscillating heat pipe with Al2 O3 – water nano fl uids ☆. Int Commun Heat Mass Transf. 2010;37:111–5. https://doi.org/10.1016/j.icheatmasstransfer.2009.10.001.

    Article  CAS  Google Scholar 

  63. Vermahmoudi Y, Peyghambarzadeh SM, Hashemabadi SH, Naraki M. Experimental investigation on heat transfer performance of Fe 2 O 3 / water nanofluid in an air-finned heat exchanger. Europ J Mech B/Fluids. 2014;44:32–41. https://doi.org/10.1016/j.euromechflu.2013.10.002.

    Article  Google Scholar 

  64. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21:58–64.

  65. Choi SUS, Zhang ZG, Yu W, Lockwood F E, Grulke E A. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl phys lett. 2001;79(14):2252–4.

  66. Xie H, Lee H, Youn W, Choi M. Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J Appl phys. 2003;94(8):4967–71.

  67. Gharagozloo PE, Goodson KE. Dependent aggregation and diffusion in nanofluids. Int J Heat Mass Transf. 2011;54:797–806. https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.058.

    Article  CAS  Google Scholar 

  68. Zhu D, Li X, Wang N, Wang X, Gao J, Li H. Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids. Curr Appl Phys. 2009;9(1):131–9.

    Article  Google Scholar 

  69. Cacua K, Ordoñez F, Zapata C, Herrera B, Pabón E, Buitrago-Sierra R. Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability. Colloids Surf A Physicochem Eng Asp. 2019;583:123960.

    Article  CAS  Google Scholar 

  70. Kole M, Dey TK. Thermophysical and pool boiling characteristics of ZnO-ethylene glycol nano fl uids. Int J Therm Sci. 2012;62:61–70. https://doi.org/10.1016/j.ijthermalsci.2012.02.002.

    Article  CAS  Google Scholar 

  71. Peyghambarzadeh ESSM, Hormozi MMSF, Deionized DI. Thermal behavior of aqueous iron oxide nano - fluid as a coolant on a flat disc heater under the pool boiling condition. Heat Mass Transf. 2017;53:265–75.

    Article  Google Scholar 

  72. Fang J, Xuan Y. Investigation of optical absorption and photothermal conversion characteristics of binary CuO/ZnO nanofluids. RSC Adv. 2017;7(88):56023–33.

    Article  CAS  Google Scholar 

  73. Duangthongsuk W, Wongwises S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Therm Fluid Sci. 2009;33:706–14. https://doi.org/10.1016/j.expthermflusci.2009.01.005.

    Article  CAS  Google Scholar 

  74. Hwang Y, Lee JK, Lee JK, Jeong YM, Cheong SI, Ahn YC, Kim SH. Production and dispersion stability of nanoparticles in nanofluids. Powder Technol. 2008;186(2):145–53.

    Article  CAS  Google Scholar 

  75. Aglawe KR, Yadav RK, Thool SB. Preparation, applications and challenges of nanofluids in electronic cooling: a systematic review. Mater Today Proc. 2021;43:366–72. https://doi.org/10.1016/j.matpr.2020.11.679.

    Article  Google Scholar 

  76. Feng X, Ma H, Huang S, Pan W, Zhang X, Tian F, Luo J. Aqueous− organic phase-transfer of highly stable gold, silver, and platinum nanoparticles and new route for fabrication of gold Nanofilms at the oil/water Interface and on solid supports. J Phys Chem B. 2006;110(25):12311–7.

    Article  CAS  Google Scholar 

  77. Jiang W, Song J, Jia T, Yang L, Li S, Li Y, et al. A comprehensive review on the pre-research of nanofluids in absorption refrigeration systems. Energy Rep. 2022;8:3437–65. https://doi.org/10.1016/j.egyr.2022.02.087.

    Article  Google Scholar 

  78. Xuan Y, Li Q, Hu W. Aggregation structure and thermal conductivity of nanofluids. AIChE J. 2003;49(4):1038–43.

    Article  CAS  Google Scholar 

  79. Popa I, Gillies G, Papastavrou G, Borkovec M. Attractive and repulsive electrostatic forces between positively charged latex particles in the presence of anionic linear polyelectrolytes. J Phys Chem B. 2010;114(9):3170–7.

    Article  CAS  Google Scholar 

  80. Rubbi F, Das L, Habib K, Aslfattahi N, Saidur R. State-of-the-art review on water-based nanofluids for low temperature solar thermal collector application. Sol Energy Mater Sol Cells. 2021;230:111220. https://doi.org/10.1016/j.solmat.2021.111220.

    Article  CAS  Google Scholar 

  81. Chakraborty S, Panigrahi PK. Stability of nanofluid: A review. Appl Therm Eng. 2020;174:115259.

  82. Zhang H, Qing S, Zhai Y, Zhang X, Zhang A. The changes induced by pH in TiO2/water nanofluids: stability, thermophysical properties and thermal performance. Powder Technol. 2021;377:748–59.

    Article  CAS  Google Scholar 

  83. Wang X, Zhu D. Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem Phys Lett. 2009;470:107–11. https://doi.org/10.1016/j.cplett.2009.01.035.

    Article  CAS  Google Scholar 

  84. Rajesh C, Deepak K, Aditya K, Sudhakar S. Stability analysis of Al2O3/water nanofluids. J Exp Nanosci. 2017;12(1):140–51. https://doi.org/10.1080/17458080.2017.1285445.

    Article  CAS  Google Scholar 

  85. Jong T, Pil S, Kedzierski MA. Effect of surfactants on the stability and solar thermal absorption characteristics of water-based nanofluids with multi-walled carbon nanotubes. Int J Heat Mass Transf. 2018;122:483–90. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.141.

    Article  CAS  Google Scholar 

  86. Vold MJ. Van der Waals’ attraction between anisometric particles. J Colloid Sci. 1954;9:451–9.

    Article  CAS  Google Scholar 

  87. Kim HJ, Lee SH, Lee JH, Jang SP. Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids. Energy. 2015;90:1290–7.

    Article  CAS  Google Scholar 

  88. Chakraborty S, Sarkar I, Ashok A, Sengupta I, Pal SK. Thermo-physical properties of Cu-Zn-Al LDH nano fl uid and its application in spray cooling. Appl Therm Eng. 2018;141:339–51. https://doi.org/10.1016/j.applthermaleng.2018.05.114.

    Article  CAS  Google Scholar 

  89. Yazid MNAWM, Sidik NAC, Mamat R, Najafi G. A review of the impact of preparation on stability of carbon nanotube nanofluids. Int Commun Heat Mass Transf. 2016;78:253–63.

    Article  CAS  Google Scholar 

  90. Sami W, Amiri A, Kazi SN, Badarudin A. Stability and thermophysical properties of non-covalently functionalized graphene nanoplatelets nanofluids. Energy Convers Manage. 2016;116:101–11. https://doi.org/10.1016/j.enconman.2016.02.082.

    Article  CAS  Google Scholar 

  91. Li Y, Tung S, Schneider E, Xi S. A review on development of nanofluid preparation and characterization. Powder Technol. 2009;196(2):89–101.

    Article  CAS  Google Scholar 

  92. LotfizadehDehkordi B, Kazi SN, Hamdi M, Ghadimi A, Sadeghinezhad E, Metselaar HSC. Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS. Heat Mass Transf. 2013;49(8):1109–15.

    Article  CAS  Google Scholar 

  93. Nikkhah V, Sarafraz MM, Hormozi F, Peyghambarzadeh SM. Particulate fouling of CuO – water nanofluid at isothermal diffusive condition inside the conventional heat exchanger-experimental and modeling. Exp Therm Fluid Sci. 2015;60:83–95. https://doi.org/10.1016/j.expthermflusci.2014.08.009.

    Article  CAS  Google Scholar 

  94. Singh V, Kumar A, Alam M, Kumar A, Kumar P, Goyat V. A study of morphology UV measurements and zeta potential of Zinc Ferrite and Al2O3 nanofluids. Mater Today Proc. 2022. https://doi.org/10.1016/j.matpr.2022.02.371.

    Article  Google Scholar 

  95. Shazali SS, Amiri A, Zubir MNM, Rozali S, Zabri MZ, Sabri MFM, Soleymaniha M. Investigation of the thermophysical properties and stability performance of non-covalently functionalized graphene nanoplatelets with Pluronic P-123 in different solvents. Mater Chem Phys. 2018;206:94–102.

    Article  CAS  Google Scholar 

  96. Almanassra IW, Manasrah AD, Al-mubaiyedh UA, Al-ansari T. An experimental study on stability and thermal conductivity of water / CNTs nano fl uids using different surfactants : a comparison study. J Mol Liq. 2020;304:111025. https://doi.org/10.1016/j.molliq.2019.111025.

    Article  CAS  Google Scholar 

  97. Kim HJ, Bang IC, Onoe J. Characteristic stability of bare Au-water nanofluids fabricated by pulsed laser ablation in liquids. Opt Lasers Eng. 2009;47(5):532–8.

    Article  Google Scholar 

  98. Chamsa-Ard W, Brundavanam S, Fung CC, Fawcett D, Poinern G. Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: a review. Nanomaterials. 2017;7(6):131.

    Article  Google Scholar 

  99. Anushree C, Philip J. Assessment of long term stability of aqueous nano fluids using different experimental techniques. J Mol Liq. 2016;222:350–8. https://doi.org/10.1016/j.molliq.2016.07.051.

    Article  CAS  Google Scholar 

  100. Gallego A, Cacua K, Herrera B, Cabaleiro D, Piñeiro MM, Lugo L. Experimental evaluation of the effect in the stability and thermophysical properties of water-Al2O3 based nanofluids using SDBS as dispersant agent. Adv Powder Technol. 2020;31:560–70. https://doi.org/10.1016/j.apt.2019.11.012.

    Article  CAS  Google Scholar 

  101. Chakraborty S, Sarkar I, Behera DK, Pal SK, Chakraborty S. Experimental investigation on the effect of dispersant addition on thermal and rheological characteristics of TiO2 nanofluid. Powder Technol. 2017;307:10–24.

    Article  CAS  Google Scholar 

  102. Ghadimi A, Saidur R, Metselaar HSC. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. 2011;54:4051–68. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014.

    Article  CAS  Google Scholar 

  103. Ilyas SU, Pendyala R, Narahari M. Stability and thermal analysis of MWCNT-thermal oil-based nano fluids. Colloids Surf A. 2017;527:11–22. https://doi.org/10.1016/j.colsurfa.2017.05.004.

    Article  CAS  Google Scholar 

  104. Chakraborty S, Sengupta I, Sarkar I, Pal SK, Chakraborty S. Effect of surfactant on thermo-physical properties and spray cooling heat transfer performance of Cu-Zn-Al LDH nanofluid. Appl Clay Sci. 2019;168:43–55. https://doi.org/10.1016/j.clay.2018.10.018.

    Article  CAS  Google Scholar 

  105. Said Z, Hachicha AA, Aberoumand S, Yousef BA, Sayed ET, Bellos E. Recent advances on nanofluids for low to medium temperature solar collectors: energy, exergy, economic analysis and environmental impact. Prog Energy Combust Sci. 2021;84:100898.

    Article  Google Scholar 

  106. Yılmaz İH, Mwesigye A. Modeling, simulation and performance analysis of parabolic trough solar collectors: a comprehensive review. Appl Energy. 2018;225:135–74.

    Article  Google Scholar 

  107. Hu X, Li Y, Tian J, Yang H, Cui H. Highly efficient full solar spectrum ( UV- [9 _ TD $ IF ] vis-NIR ) photocatalytic performance of Ag2 S quantum dot / TiO2 nanobelt heterostructures. J Ind Eng Chem. 2017;45:189–96. https://doi.org/10.1016/j.jiec.2016.09.022.

    Article  CAS  Google Scholar 

  108. Sajid MU, Bicer Y. Nanofluids as solar spectrum splitters: a critical review. Sol Energy. 2020;207:974–1001. https://doi.org/10.1016/j.solener.2020.07.009.

    Article  CAS  Google Scholar 

  109. Han D, Meng Z, Wu D, Zhang C, Zhu H. Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res Lett. 2011;6(1):1–7.

    Article  Google Scholar 

  110. Walshe J, Amarandei G, Ahmed H, McCormack S, Doran J. Development of poly-vinyl alcohol stabilized silver nanofluids for solar thermal applications. Sol Energy Mater Sol Cells. 2019;201:110085. https://doi.org/10.1016/j.solmat.2019.110085.

    Article  CAS  Google Scholar 

  111. Chen M, He Y, Ye Q, Wang X, Hu Y. Shape-dependent solar thermal conversion properties of plasmonic Au nanoparticles under di ff erent light fi lter conditions. Sol Energy. 2019;182:340–7. https://doi.org/10.1016/j.solener.2019.02.070.

    Article  CAS  Google Scholar 

  112. Fang J, Zhang P, Chang H, Wang X. Hydrothermal synthesis of nanostructured CuS for broadband e ffi cient optical absorption and high-performance photo-thermal conversion. Sol Energy Mater Sol Cells. 2018;185:456–63. https://doi.org/10.1016/j.solmat.2018.05.060.

    Article  CAS  Google Scholar 

  113. Subramaniyan AL, Priya SL, Kottaisamy M, Ilangovan R. Investigations on the absorption spectrum of TiO2 nanofluid. J Energy South Afr. 2014;25(4):123–7.

    Article  Google Scholar 

  114. Khullar V, Bhalla V, Tyagi H. Potential heat transfer fluids (nanofluids) for direct volumetric absorption-based solar thermal systems. J Therm Sci Eng Appl. 2018;10(1):011009.

    Article  Google Scholar 

  115. Shende R, Sundara R. Nitrogen doped hybrid carbon based composite dispersed nano fluids as working fluid for low-temperature direct absorption solar collectors. Sol Energy Mater Sol Cells. 2015;140:9–16. https://doi.org/10.1016/j.solmat.2015.03.012.

    Article  CAS  Google Scholar 

  116. Lee S, Jang SP. Extinction coefficient of aqueous nanofluids containing multi-walled carbon nanotubes. Int J Heat Mass Transf. 2013;67:930–5. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.094.

    Article  CAS  Google Scholar 

  117. An W, Chen L, Liu T, Qin Y. Enhanced solar distillation by nanofluid-based spectral splitting PV/T technique: preliminary experiment. Sol Energy. 2018;176:146–56.

    Article  CAS  Google Scholar 

  118. Zeiny A, Jin H, Bai L, Lin G, Wen D. A comparative study of direct absorption nano fluids for solar thermal applications. Sol Energy. 2018;161:74–82. https://doi.org/10.1016/j.solener.2017.12.037.

    Article  CAS  Google Scholar 

  119. He Y, Chen M, Wang X, Hu Y. Plasmonic multi-thorny Gold nanostructures for enhanced solar thermal conversion. Sol Energy. 2018;171:73–82. https://doi.org/10.1016/j.solener.2018.06.071.

    Article  CAS  Google Scholar 

  120. Said Z, Saidur R, Rahim NA. Optical properties of metal oxides based nano fluids ☆. Int Commun Heat Mass Transf. 2014;59:46–54. https://doi.org/10.1016/j.icheatmasstransfer.2014.10.010.

    Article  CAS  Google Scholar 

  121. Zhu Q, Cui Y, Mu L, Tang L. Characterization of thermal radiative properties of nanofluids for selective absorption of solar radiation. Int J Thermophys. 2013;34(12):2307–21.

    Article  CAS  Google Scholar 

  122. Keblinski P, Phillpot SR, Choi SUS, Eastman JA. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat and Mass Transf. 2002;45(4):855–63.

    Article  CAS  Google Scholar 

  123. Sabiha MA, Mostafizur RM, Saidur R, Mekhilef S. Experimental investigation on thermo physical properties of single walled carbon nanotube nanofluids. Int J Heat Mass Transf. 2016;93:862–71. https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.071.

    Article  CAS  Google Scholar 

  124. Omrani AN, Esmaeilzadeh E, Jafari M, Behzadmehr A. Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids. Diam Relat Mater. 2019;93:96–104. https://doi.org/10.1016/j.diamond.2019.02.002.

    Article  CAS  Google Scholar 

  125. Wang L, Zhu G, Wang M, Yu W, Zeng J, Yu X, Li Q. Dual plasmonic Au/TiN nanofluids for efficient solar photothermal conversion. Sol Energy. 2019;184:240–8.

    Article  CAS  Google Scholar 

  126. Chen W, Zou C, Li X. Application of large-scale prepared MWCNTs nanofluids in solar energy system as volumetric solar absorber. Sol Energy Mater Sol Cells. 2019;200:109931. https://doi.org/10.1016/j.solmat.2019.109931.

    Article  CAS  Google Scholar 

  127. Wang D, Jia Y, He Y, Wang L, Fan J, Xie H, et al. Enhanced photothermal conversion properties of magnetic nanofluids through rotating magnetic field for direct absorption solar collector. J Colloid Interface Sci. 2019;557:266–75. https://doi.org/10.1016/j.jcis.2019.09.022.

    Article  CAS  Google Scholar 

  128. Mehrali M, Krishna M, Pecnik R. Full-spectrum volumetric solar thermal conversion via graphene / silver hybrid plasmonic nano fl uids. Appl Energy. 2018;224:103–15. https://doi.org/10.1016/j.apenergy.2018.04.065.

    Article  CAS  Google Scholar 

  129. Heyhat MM, Valizade M, Abdolahzade S, Maerefat M. Thermal ef fi ciency enhancement of direct absorption parabolic trough solar collector ( DAPTSC) by using nano fl uid and metal foam. Energy. 2020;192:116662. https://doi.org/10.1016/j.energy.2019.116662.

    Article  CAS  Google Scholar 

  130. Tong Y, Chi X, Kang W, Cho H. Comparative investigation of efficiency sensitivity in a flat plate solar collector according to nanofluids. Appl Therm Eng. 2020;174:115346.

    Article  CAS  Google Scholar 

  131. Choudhary S, Sachdeva A, Kumar P. Influence of stable zinc oxide nano fluid on thermal characteristics of flat plate solar collector. Renew Energy. 2020;152:1160–70. https://doi.org/10.1016/j.renene.2020.01.142.

    Article  CAS  Google Scholar 

  132. Eltaweel M, Abdel-rehim AA. Energy and exergy analysis of a thermosiphon and forced- circulation fl at-plate solar collector using MWCNT / Water nano fl uid. Case Stud Therm Eng. 2019;14:100416. https://doi.org/10.1016/j.csite.2019.100416.

    Article  Google Scholar 

  133. Hussein OA, Habib K, Muhsan AS, Saidur R, Alawi OA, Ibrahim TK. Thermal performance enhancement of a flat plate solar collector using hybrid nano fluid. Sol Energy. 2020;204:208–22. https://doi.org/10.1016/j.solener.2020.04.034.

    Article  CAS  Google Scholar 

  134. Sajid M, Abid M, Muhammad H, Pervez K, Anser M, Javed S. Comparative performance assessment of solar dish assisted s-CO2 Brayton cycle using nanofluids. Appl Therm Eng. 2019;148:295–306. https://doi.org/10.1016/j.applthermaleng.2018.11.021.

    Article  CAS  Google Scholar 

  135. Potenza M, Milanese M, Colangelo G, De RA. Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid. Appl Energy. 2017;203:560–70. https://doi.org/10.1016/j.apenergy.2017.06.075.

    Article  CAS  Google Scholar 

  136. Lee SH, Choi TJ, Jang SP. Thermal efficiency comparison: Surface-based solar receivers with conventional fluids and volumetric solar receivers with nanofluids. Energy. 2016;115:404–17.

    Article  CAS  Google Scholar 

  137. Yang L, Du K. Thermo-economic analysis of a novel parabolic trough solar collector equipped with preheating system and canopy. Energy. 2020;211:118900. https://doi.org/10.1016/j.energy.2020.118900.

    Article  Google Scholar 

  138. Fan M, Liang H, You S, Zhang H, Zheng W. Heat transfer analysis of a new volumetric based receiver for parabolic trough solar collector. Energy. 2018;142:920–31. https://doi.org/10.1016/j.energy.2017.10.076.

    Article  Google Scholar 

  139. Abid M, Ratlamwala TAH, Atikol U. ScienceDirect Solar assisted multi-generation system using nanofluids: a comparative analysis. Int J Hydrog Energy. 2017;42:21429–42. https://doi.org/10.1016/j.ijhydene.2017.05.178.

    Article  CAS  Google Scholar 

  140. Choudhary S, Sachdeva A, Kumar P. Investigation of the stability of MgO nano fluid and its effect on the thermal performance of flat plate solar collector. Renew Energy. 2020;147:1801–14. https://doi.org/10.1016/j.renene.2019.09.126.

    Article  CAS  Google Scholar 

  141. Yang L, Ji W, Mao M, Huang J. An updated review on the properties, fabrication and application of hybrid-nano fluids along with their environmental effects. J Clean Prod. 2020;257:120408. https://doi.org/10.1016/j.jclepro.2020.120408.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work of this paper is financially supported by the National Natural Science Foundation of China (52176061, 51876040), the Scientific and Technological Innovation Project of Carbon Emission Peak and Carbon Neutrality of Jiangsu Province (No.BE2022028–4), and the Project of Jiangsu Provincial Six Talent Peaks. The supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Yang, L., Sun, L. et al. The preparation, stability and heat-collection efficiency of solar nanofluids. J Therm Anal Calorim 148, 591–622 (2023). https://doi.org/10.1007/s10973-022-11720-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11720-x

Keywords

Navigation