Skip to main content
Log in

Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The present study focused on thermal conductivity and viscosity of alumina nanoparticles, at low volume concentrations of 0.01–1.0 % dispersed in the mixture of ethylene glycol and water (mass ratio, 60:40). Sodium dodeobcylbenzene sulfonate (SDBS) was applied for better dispersion and stability of alumina nanoparticles and study of its influence on both thermal conductivity and viscosity. The thermal conductivity established polynomial enhancement pattern with increase of volume concentration up to 0.1 % while linear enhancement was obtained at higher concentrations. In addition, thermal conductivity was enhanced with the rise of temperature. However, the augmentation was negligible compared to that obtained with increase of volume concentration. In contrast, viscosity data showed remarkable reduction with increase of temperature. Meanwhile, viscosity of nanofluids enhanced with loading of alumina nanoparticles. Thermal conductivity and viscosity measurements showed higher values over theoretical predictions. Results showed SDBS at different concentrations has distinct influence on thermal conductivity and viscosity of nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Choi SUS (2009) Nanofluids: from vision to reality through research. J Heat Transfer 131:033106

    Article  Google Scholar 

  2. Chandratilleke T, Jagannatha D, Narayanaswamy R (2010) Heat transfer enhancement in microchannels with cross-flow synthetic jets. Int J Therm Sci 49(3):504–513

    Article  Google Scholar 

  3. Huq M, Aziz-ul Huq A, Rahman MM (1998) Experimental measurements of heat transfer in an internally finned tube. Int Commun Heat Mass Transf 25(5):619–630

    Article  Google Scholar 

  4. Ho CJ, Wei LC, Li ZW (2010) An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid. Appl Therm Eng 30(2–3):96–103. doi:10.1016/j.applthermaleng.2009.07.003

    Article  Google Scholar 

  5. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP (eds) Developments and applications of non-Newtonian flows. ASME, New York, pp 99–105

    Google Scholar 

  6. Duangthongsuk W, Wongwises S (2009) Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Therm Fluid Sci 33(4):706–714

    Article  Google Scholar 

  7. Golubovic MN, Madhawa Hettiarachchi H, Worek W, Minkowycz W (2009) Nanofluids and critical heat flux, experimental and analytical study. Appl Therm Eng 29(7):1281–1288

    Article  Google Scholar 

  8. Sonawane S, Patankar K, Fogla A, Puranik B, Bhandarkar U, Sunil Kumar S (2011) An experimental investigation of thermo-physical properties and heat transfer performance of Al2O3-aviation turbine fuel nanofluids. Appl Therm Eng 31(14–15):2841–2849. doi:10.1016/j.applthermaleng.2011.05.009

    Article  Google Scholar 

  9. Teng TP, Hung YH, Teng TC, Mo HE, Hsu HG (2010) The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng 30(14–15):2213–2218

    Article  Google Scholar 

  10. Wu S, Zhu D, Li X, Li H, Lei J (2009) Thermal energy storage behavior of Al2O3–H2O nanofluids. Thermochim Acta 483(1–2):73–77

    Article  Google Scholar 

  11. LotfizadehDehkordi B, Ghadimi A, Metselaar HS (2013) Box–Behnken experimental design for investigation of stability and thermal conductivity of TiO2 nanofluids. J Nanopart Res 15(1):1–9

    Article  Google Scholar 

  12. Garg J, Poudel B, Chiesa M, Gordon J, Ma J, Wang J, Ren Z, Kang Y, Ohtani H, Nanda J (2008) Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J Appl Phys 103:074301

    Article  Google Scholar 

  13. Vajjha RS, Das DK (2009) Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf 52(21–22):4675–4682

    Article  MATH  Google Scholar 

  14. Yoo D-H, Hong KS, Yang H-S (2007) Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochim Acta 455(1–2):66–69. doi:10.1016/j.tca.2006.12.006

    Article  Google Scholar 

  15. Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125:567

    Article  Google Scholar 

  16. Beck M, Yuan Y, Warrier P, Teja A (2010) The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures. J Nanopart Res 12(4):1469–1477. doi:10.1007/s11051-009-9716-9

    Article  Google Scholar 

  17. Lee JH, Hwang KS, Jang SP, Lee BH, Kim JH, Choi SUS, Choi CJ (2008) Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf 51(11–12):2651–2656

    Article  Google Scholar 

  18. Ghadimi A, Saidur R, Metselaar H (2011) A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf 54(17–18):4051–4068

    Article  Google Scholar 

  19. Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K (2009) An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf 52(21–22):5090–5101

    Article  Google Scholar 

  20. Eastman J, Choi S, Li S, Yu W, Thompson L (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720

    Article  Google Scholar 

  21. Sundar LS, Sharma K (2010) Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts. Int J Heat Mass Transf 53(7–8):1409–1416

    Article  MATH  Google Scholar 

  22. Wang X, Zhu D (2009) Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem Phys Lett 470(1–3):107–111

    Article  Google Scholar 

  23. Li X, Zhu D, Wang X (2007) Evaluation on dispersion behavior of the aqueous copper nano-suspensions. J Colloid Interface Sci 310(2):456–463

    Article  Google Scholar 

  24. Li XF, Zhu DS, Wang XJ, Wang N, Gao JW, Li H (2008) Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids. Thermochim Acta 469(1–2):98–103. doi:10.1016/j.tca.2008.01.008

    Article  Google Scholar 

  25. Yang L, Du K, Ding YH, Cheng B, Li YJ (2012) Viscosity-prediction models of ammonia water nanofluids based on various dispersion types. Powder Technol 215–216:210–218. doi:10.1016/j.powtec.2011.09.050

    Article  Google Scholar 

  26. Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf 13(4):474–480

    Article  Google Scholar 

  27. Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger JV (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E 76(6):061203

    Article  Google Scholar 

  28. Chandrasekar M, Suresh S, Chandra Bose A (2010) Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Therm Fluid Sci 34(2):210–216

    Article  Google Scholar 

  29. Gocmez H (2006) The interaction of organic dispersant with alumina: a molecular modelling approach. Ceram Int 32(5):521–525

    Article  Google Scholar 

  30. Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu L, Alvarado JL (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106(9):094312–094314.

    Article  Google Scholar 

  31. ASHRAE Handbook, Fundamentals (2001) American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc., Atlanta

  32. Yu W, Choi S (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5(1):167–171

    Article  Google Scholar 

  33. Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316

    Article  Google Scholar 

  34. Jang SP, Choi SUS (2007) Effects of various parameters on nanofluid thermal conductivity. J Heat Transf 129:617

    Article  Google Scholar 

  35. Bruggeman D (1935) Calculation of various physics constants in heterogenous substances I. Dielectricity constants and conductivity of mixed bodies from isotropic substances. Ann Phys 24(7):636–664

    Article  Google Scholar 

  36. Hamilton R, Crosser O (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1(3):187–191

    Article  Google Scholar 

  37. Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47(24):5181–5188

    Article  Google Scholar 

  38. Chen H, Ding Y, He Y, Tan C (2007) Rheological behaviour of ethylene glycol based titania nanofluids. Chem Phys Lett 444(4–6):333–337

    Article  Google Scholar 

  39. Brinkman H (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571

    Article  Google Scholar 

  40. Batchelor G (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83(01):97–117

    Article  MathSciNet  Google Scholar 

  41. Einstein A (1956) Investigations on the theory of the Brownian movement. Dover Publications, New York

    MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial supports of the High Impact Research Grant (UM.C/625/1/HIR/C3/026) and the UMRG Fund (RG084/10AET), from University of Malaya, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. LotfizadehDehkordi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LotfizadehDehkordi, B., Kazi, S.N., Hamdi, M. et al. Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS. Heat Mass Transfer 49, 1109–1115 (2013). https://doi.org/10.1007/s00231-013-1153-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1153-8

Keywords

Navigation