Skip to main content
Log in

Thermal, optical and temperature-dependent electrical properties of poly(aniline-co-pyrrole)/copper alumina nanocomposites for optoelectronic devices

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The article deals with the investigation of structural, thermal and temperature-dependent alternating current (AC) parameters of hetero-structures generated by the reinforcement of copper alumina (Cu–Al2O3) nanoparticles within the poly(aniline-co-pyrrole) (PANI-co-PPy). Further, the effect of reinforcement of Cu–Al2O3 on the direct current (DC) conductivity of the copolymer was equated with various theoretical models. Compared with the pristine copolymer, the ultraviolet–visible (UV–visible) spectrum of (PANI-co-PPy)/Cu–Al2O3 nanocomposites manifested a redshift in absorbance and the least optical bandgap energy was observed for 5 mass percentage (mass %) nanocomposite. Field emission scanning electron microscopy confirmed the effective reinforcement of Cu–Al2O3 nanoparticles within the PANI-co-PPy. The thermogravimetric analysis profile demonstrated a delayed thermal degradation for copolymer nanocomposites. The alternating current (AC) conductivity and dielectric properties were enhanced with a rise in temperature and content of nanofillers (up to 5 mass % loading). Further, the activation energy was found to be reduced with the temperature indicating the semiconductive behavior of synthesized nanocomposites. The Nyquist plot of copolymer nanocomposites showed two distinct areas, an incomplete semicircle and a rapid spike. The diameter of the semicircle was decreased with temperature. The DC conductivity of nanocomposites was enhanced with the reinforcement of Cu–Al2O3 nanofillers due to the enriched number of charge carriers accumulated within the nanocomposites. Finally, DC conductivity values were equated using Scarisbrick, Bueche and McCullough theoretical models. The McCullough model was in good agreement with measured DC conductivity as this model explains the dependence of DC conductivity with the quantity of filler and conductive pathway generated between the interfaces. Based on the results, these synthesized copolymer composites can be used in highly durable electronic devices such as supercapacitors, electrochemical sensors and optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Amorim DRB, Bellucci FS, Job AE, Guimarães IdS, da Cunha HN. Electrical, structural and thermal properties of new conductive blends (PANICG) based on polyaniline and cashew gum for organic electronic. J Therm Anal Calorim. 2019;136(4):1615–29. https://doi.org/10.1007/s10973-018-7778-6.

    Article  CAS  Google Scholar 

  2. Sofiah AGN, Samykano M, Shahabuddin S, Kadirgama K, Pandey AK. An experimental study on characterization and properties of eco-friendly nanolubricant containing polyaniline (PANI) nanotubes blended in RBD palm olein oil. J Therm Anal Calorim. 2021;145(6):2967–81. https://doi.org/10.1007/s10973-020-09891-6.

    Article  CAS  Google Scholar 

  3. Fisher C, Warmack BJ, Yu Y, Skolrood LN, Li K, Joshi PC, et al. All-aerosol-jet-printed highly sensitive and selective polyaniline-based ammonia sensors: a route toward low-cost, low-power gas detection. J Mater Sci. 2021;56(22):12596–606. https://doi.org/10.1007/s10853-021-06080-0.

    Article  CAS  Google Scholar 

  4. Xu Y, Liu Q, You H, Zang L, Xiao Y, Wang X, et al. A facile patterning preparation of barnacle-like polypyrrole on sandpaper for flexible electronics. J Mater Sci. 2021;56(32):18162–73. https://doi.org/10.1007/s10853-021-06515-8.

    Article  CAS  Google Scholar 

  5. Yamani K, Berenguer R, Benyoucef A, Morallón E. Preparation of polypyrrole (PPy)-derived polymer/ZrO2 nanocomposites. J Therm Anal Calorim. 2019;135(4):2089–100. https://doi.org/10.1007/s10973-018-7347-z.

    Article  CAS  Google Scholar 

  6. Zeng J-L, Sun S-L, Zhou L, Chen Y-H, Shu L, Yu L-P, et al. Preparation, morphology and thermal properties of microencapsulated palmitic acid phase change material with polyaniline shells. J Therm Anal Calorim. 2017;129(3):1583–92. https://doi.org/10.1007/s10973-017-6352-y.

    Article  CAS  Google Scholar 

  7. Gheymasi AN, Rajabi Y, Zare EN. Nonlinear optical properties of poly(aniline-co-pyrrole)@ ZnO-based nanofluid. Opt Mater. 2020;102: 109835. https://doi.org/10.1016/j.optmat.2020.109835.

    Article  CAS  Google Scholar 

  8. Khademi S, Pourabbas B, Foroutani K. Synthesis and characterization of poly(thiophene-co-pyrrole) conducting copolymer nanoparticles via chemical oxidative polymerization. Polym Bull. 2018;75(9):4291–309. https://doi.org/10.1007/s00289-017-2264-z.

    Article  CAS  Google Scholar 

  9. Pattanayak P, Papiya F, Kumar V, Singh A, Kundu PP. Performance evaluation of poly(aniline-co-pyrrole) wrapped titanium dioxide nanocomposite as an air-cathode catalyst material for microbial fuel cell. Mater Sci Eng C. 2021;118:111492. https://doi.org/10.1016/j.msec.2020.111492.

    Article  CAS  Google Scholar 

  10. Zare EN, Abdollahi T, Motahari A. Effect of functionalization of iron oxide nanoparticles on the physical properties of poly (aniline-co-pyrrole) based nanocomposites: experimental and theoretical studies. Arab J Chem. 2020;13(1):2331–9. https://doi.org/10.1016/j.arabjc.2018.04.016.

    Article  CAS  Google Scholar 

  11. Saini M, Shukla R. Silver nanoparticles-decorated NiFe2O4/polyaniline ternary nanocomposite for electromagnetic interference shielding. J Mater Sci Mater Electron. 2020;31(7):5152–64. https://doi.org/10.1007/s10854-020-03075-6.

    Article  CAS  Google Scholar 

  12. Ascencio F, Bobadilla A, Escudero R. Study of NiO nanoparticles, structural and magnetic characteristics. Appl Phys A. 2019;125(4):279. https://doi.org/10.1007/s00339-019-2579-8.

    Article  CAS  Google Scholar 

  13. Azizi A. Green synthesis of Fe3O4 nanoparticles and its application in preparation of Fe3O4/cellulose magnetic nanocomposite: a suitable proposal for drug delivery systems. J Inorg Organomet Polym Mater. 2020;30(9):3552–61. https://doi.org/10.1007/s10904-020-01500-1.

    Article  CAS  Google Scholar 

  14. Suhailath K, Thomas M, Ramesan MT. Studies on mechanical properties, dielectric behavior and DC conductivity of neodymium oxide/poly (butyl methacrylate). Polym Polym Compos. 2021;29(8):1200–11. https://doi.org/10.1177/0967391120960658.

    Article  CAS  Google Scholar 

  15. Wu Z, Qi J, Li F, Zhu X, Wang Z, Zhang G, et al. The coupling influence of UV illumination and strain on the surface potential distribution of a single ZnO micro/nano wire. Nano Res. 2016;9(9):2572–80. https://doi.org/10.1007/s12274-016-1143-5.

    Article  CAS  Google Scholar 

  16. Zhu YF, Zhang L, Natsuki T, Fu YQ, Ni QQ. Synthesis of hollow poly(aniline-co-pyrrole)–Fe3O4 composite nanospheres and their microwave absorption behavior. Synth Met. 2012;162(3):337–43. https://doi.org/10.1016/j.synthmet.2011.12.015.

    Article  CAS  Google Scholar 

  17. Ismail RA, Zaidan SA, Kadhim RM. Preparation and characterization of aluminum oxide nanoparticles by laser ablation in liquid as passivating and anti-reflection coating for silicon photodiodes. Appl Nanosci. 2017;7(7):477–87. https://doi.org/10.1007/s13204-017-0580-0.

    Article  CAS  Google Scholar 

  18. Kakade MB, Ramanathan S, Kothiyal GP. Nano-alumina by gel combustion, its thermal characterization and slurry-based coating on stainless steel surface. J Therm Anal Calorim. 2013;112(1):133–40. https://doi.org/10.1007/s10973-012-2700-0.

    Article  CAS  Google Scholar 

  19. Yahya SI, Rezaei A, Aghel B. Forecasting of water thermal conductivity enhancement by adding nano-sized alumina particles. J Therm Anal Calorim. 2021;145(4):1791–800. https://doi.org/10.1007/s10973-020-10452-0.

    Article  CAS  Google Scholar 

  20. Lu D, Jiang J, Lu L, Liao X, Nesterov KM, Islamgaliev RK, et al. Hardness, electrical conductivity and thermal stability of externally oxidized Cu–Al2O3 composite processed by SPD. J Mater Eng Perform. 2017;26(5):2110–7. https://doi.org/10.1007/s11665-017-2660-4.

    Article  CAS  Google Scholar 

  21. Menon SS, Thomas M, Ramesan MT. Synthesis, characterization, gas sensing, and electrical property evaluation of polyaniline/copper-alumina nanocomposites. Polym Compos. 2020;41(3):900–10. https://doi.org/10.1002/pc.25421.

    Article  CAS  Google Scholar 

  22. Gürel EA, Toppare L, Hacaloglu J. Direct pyrolysis mass spectrometry to investigate the effects of dopants on characteristics of polypyrrole and its copolymers. J Therm Anal Calorim. 2013;111(2):1133–8. https://doi.org/10.1007/s10973-012-2495-z.

    Article  CAS  Google Scholar 

  23. Zoromba MS, Hosny NM. Synthesis of Fe2O3, Co3O4 and NiO nanoparticles by thermal decomposition of doped polyaniline precursors. J Therm Anal Calorim. 2015;119(1):605–11. https://doi.org/10.1007/s10973-014-4170-z.

    Article  CAS  Google Scholar 

  24. Sharma BK, Khare N, Sharma R, Dhawan SK, Vankar VD, Gupta HC. Dielectric behavior of polyaniline–CNTs composite in microwave region. Compos Sci Technol. 2009;69(11):1932–5. https://doi.org/10.1016/j.compscitech.2009.04.012.

    Article  CAS  Google Scholar 

  25. Megha R, Ravikiran YT, Chethan B, Raj Prakash HG, Vijaya Kumari SC, Thomas S. Effect of mechanical mixing method of preparation of polyaniline-transition metal oxide composites on DC conductivity and humidity sensing response. J Mater Sci Mater Electron. 2018;29(9):7253–61. https://doi.org/10.1007/s10854-018-8714-z.

    Article  CAS  Google Scholar 

  26. Amruth K, Abhimari KM, Sankar S, Ramesan MT. Synthesis, characterization, dielectric properties and gas sensing application of polythiophene/chitosan nanocomposites. Inorg Chem Commun. 2021;136(2): 109184. https://doi.org/10.1016/j.inoche.2021.109184.

    Article  CAS  Google Scholar 

  27. Nihmath A, Ramesan MT. Fabrication, characterization, dielectric properties, thermal stability, flame retardancy and transport behavior of chlorinated nitrile rubber/hydroxyapatite nanocomposites. Polym Bull. 2021;78(11):6999–7018. https://doi.org/10.1007/s00289-020-03469-w.

    Article  CAS  Google Scholar 

  28. Biryan F, Pihtili G, Demirelli K. Thermal studies and influence of the thermal decomposition on dielectric properties of a new coumarin copolymers. J Therm Anal Calorim. 2020;139(6):3871–85. https://doi.org/10.1007/s10973-019-08993-0.

    Article  CAS  Google Scholar 

  29. Subburaj M, Ramesan MT, Pradyumnan PP. Preparation, characterization and conductivity studies of chlorinated natural rubber. AIP Conf Proced. 2014;1620:541–8. https://doi.org/10.1063/1.4898294.

    Article  Google Scholar 

  30. Suhailath K, Ramesan MT. Effect of ceria nanoparticles on mechanical properties, thermal and dielectric properties of poly (butyl methacrylate) nanocomposites. Polym Compos. 2020;41:2344–54. https://doi.org/10.1002/pc.25542.

    Article  CAS  Google Scholar 

  31. Gaur MS, Indolia AP, Rogachev AA, Rahachou AV. Influence of SiO2 nanoparticles on morphological, thermal, and dielectric properties of PVDF. J Therm Anal Calorim. 2015;122(3):1403–16. https://doi.org/10.1007/s10973-015-4872-x.

    Article  CAS  Google Scholar 

  32. Mannu P, Palanisamy M, Bangaru G, Ramakrishnan S, Kandasami A, Kumar P. Temperature-dependent AC conductivity and dielectric and impedance properties of ternary In–Te–Se nanocomposite thin films. Appl Phys A. 2019;125(7):458. https://doi.org/10.1007/s00339-019-2751-1.

    Article  CAS  Google Scholar 

  33. Suhailath K, Ramesan MT. Investigations on the structural, mechanical, thermal, and electrical properties of Ce-doped TiO2/poly(n-butyl methacrylate) nanocomposites. J Therm Anal Calorim. 2019;135(4):2159–69. https://doi.org/10.1007/s10973-018-7285-9.

    Article  CAS  Google Scholar 

  34. Naz S, Durrani SK, Mehmood M, Nadeem M, Khan AA. Study of thermal, structural and impedance characteristics of nanocrystalline copper chromite synthesized via hydrothermal process. J Therm Anal Calorim. 2016;126(2):381–9. https://doi.org/10.1007/s10973-016-5520-9.

    Article  CAS  Google Scholar 

  35. Scarisbrick RM. Electrically conducting mixtures. J Phys D Appl Phys. 1973;6(17):2098. https://doi.org/10.1088/0022-3727/6/17/316.

    Article  CAS  Google Scholar 

  36. Bueche F. Electrical resistivity of conducting particles in an insulating matrix. J Appl Phys. 1972;43:4837–8. https://doi.org/10.1063/1.1661034.

    Article  CAS  Google Scholar 

  37. McCullough RL. Generalized combining rules for predicting transport properties of composite materials. Compos Sci Technol. 1985;22:3–21. https://doi.org/10.1016/0266-3538(85)90087-9.

    Article  CAS  Google Scholar 

  38. Suhailath K, Ramesan MT. Theoretical and experimental studies on DC conductivity and temperature dependent AC conductivity of poly (butyl methacrylate)/Nd doped TiO2 nanocomposites. J Thermoplast Compos Mater. 2020;33(8):1061–77. https://doi.org/10.1177/0892705718817350.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Ramesan.

Ethics declarations

Conflict of interest

The authors of this article have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankar, S., Ramesan, M.T. Thermal, optical and temperature-dependent electrical properties of poly(aniline-co-pyrrole)/copper alumina nanocomposites for optoelectronic devices. J Therm Anal Calorim 147, 13375–13387 (2022). https://doi.org/10.1007/s10973-022-11670-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11670-4

Keywords

Navigation