Skip to main content
Log in

Experiments on thermal properties of ionic liquid enhanced with alumina nanoparticles for solar applications

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ionanofluids (INF) are combinations of ionic liquid (IL) and nanoparticles (NP) with superior thermophysical properties. In the present study, measurement of thermophysical profile of IL, 1-ethyl-3-methylimidazolium chloride ([EMiM]Cl) in which Al2O3 NPs are dispersed were undertaken in the temperature range of 303.15–333.15 K. INFs were prepared by dispersing Al2O3 NPs in different mass concentrations of 0.5, 1.0, 2.5, 5.0, and 10%. The results showed that specific heat and thermal conductivity increase with both concentration and temperature. In contrast, the viscosity and density increase with concentration and decrease with temperature rise. The maximum INF thermal conductivity and viscosity enhancements were 21.9% and 77.6% for a mass concentration of 10% compared to IL at 333.15 K and 303.15 K. Electrical conductivity decreases with NP addition and increases linearly with an increment in temperature. Based on the measured results, a correlation for the specific heat, thermal conductivity, and viscosity of INF was proposed. Further, the heat transfer performance of studied INF is theoretically estimated based on the experimental thermophysical properties. Finally, for high-temperature applications methylimidazolium chloride-based INFs can be used as an efficient candidate as primary heat transfer fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

[BMIM][BF4]:

1-Butyl-3-methylimidazolium tetrafluoroborate

C p :

Specific heat (J kg1 K1)

[C2mim][CH3SO3]:

1-Ethyl-3-methylimidazolium methanesulfonate

[C4mim][NTf2]:

1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide

[C4mpyrr][NTf2]:

N-Butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide

[C4mmim][NTf2]:

1-Butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide

EC:

Electrical conductivity

FESEM:

Field emission scanning electron microscope

[HMIM] [BF4]:

1-Hexyl-3-methylimidazolium tetrafluoroborate

IL:

Ionic liquid

INF:

Ionanofluid

ILF:

Internal laminar flow

ITF:

Internal turbulent flow

k :

Thermal conductivity (W m1 K1)

[N4111][NTf2]:

Butyl trimethylammonium bis(trifluoromethylsulfonyl) imide

m :

Mass fraction

Q :

Heat input

T :

Temperature

v :

Volume

Δ :

Uncertainty

ρ :

Density (kg m3)

φ :

Mass fraction

μ :

Viscosity (mPa s)

bf:

Base fluid

nf:

Nanofluid

p:

Particle

vol:

Volume (%)

References

  1. Gupta M, Singh V, Kumar R, Said Z. A review on thermophysical properties of nanofluids and heat transfer applications. Renew Sustain Energy Rev. 2017;74:638–70. https://doi.org/10.1016/j.rser.2017.02.073.

    Article  CAS  Google Scholar 

  2. Parashar N, Yahya SM. Thermophysical and rheological properties of hybrid nanofluids: a review on recent studies. J Therm Anal Calorim. 2021;1:1–16. https://doi.org/10.1007/s10973-021-10854-8.

    Article  CAS  Google Scholar 

  3. Kanti P, Sharma KV, Ramachandra CG, Gupta M. Thermal performance of fly ash nanofluids at various inlet fluid temperatures: an experimental study. Int Commun Heat Mass Transf. 2020;119:104926.

    Article  CAS  Google Scholar 

  4. Wang XQ, Mujumdar AS. A review on nanofluids—part II: experiments and applications. Braz J Chem Eng. 2008;25:631–48. https://doi.org/10.1590/s0104-66322008000400002.

    Article  Google Scholar 

  5. Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature-dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci. 2009;48:363–71. https://doi.org/10.1016/j.ijthermalsci.2008.03.009.

    Article  CAS  Google Scholar 

  6. Sundar LS, Sharma KV, Singh MK, Sousa ACM. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor—a review. Renew Sustain Energy Rev. 2017;68:185–98. https://doi.org/10.1016/j.rser.2016.09.108.

    Article  CAS  Google Scholar 

  7. Gupta M, Singh VK, Kumar S, Dilbaghi N, Said Z. Up to date review on the synthesis and thermophysical properties of hybrid nanofluids. J Clean Prod. 2018;190:169–92. https://doi.org/10.1016/j.rser.2017.02.073.

    Article  CAS  Google Scholar 

  8. Azmi WH, Sharma KV, Sarma PK, Mamat R, Anuar S, Rao DV. Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid. Exp Therm Fluid Sci. 2013;51:103–11. https://doi.org/10.1016/j.expthermflusci.2013.

    Article  CAS  Google Scholar 

  9. Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. Effect of temperature and concentration on thermal conductivity and viscosity of ferrofluid loaded with carbon nanotubes. Heat Mass Transf. 2016;52:2293–301. https://doi.org/10.1007/s00231-015-1743-8.

    Article  CAS  Google Scholar 

  10. Tawfik MM. Experimental studies of nanofluid thermal conductivity enhancement and applications: a review. Renew Sustain Energy Rev. 2017;75:1239–53. https://doi.org/10.1016/j.rser.2016.11.111.

    Article  CAS  Google Scholar 

  11. Wadekar VV. Ionic liquids as heat transfer fluids—an assessment using industrial exchanger geometries. Appl Therm Eng. 2017;111:1581–7. https://doi.org/10.1016/j.applthermaleng.2016.04.156.

    Article  CAS  Google Scholar 

  12. Chernikova EA, Glukhov LM, Krasovskiy VG, Kustov LM, Vorobyeva MG, Koroteev AA. Ionic liquids as heat transfer fluids: comparison with known systems, possible applications, advantages and disadvantages. Russ Chem Rev. 2015;84:875–90. https://doi.org/10.1070/rcr4510.

    Article  CAS  Google Scholar 

  13. Nieto de Castro CA, Lourenço MJV, Ribeiro APC, Langa E, Vieira SC, Goodrich P, Hardacre C. Thermal properties of ionic liquids and ionanofluids of imidazolium and pyrrolidinium liquids. J Chem Eng Data. 2010;55(2):653–61. https://doi.org/10.1021/je900648p.

    Article  CAS  Google Scholar 

  14. Zhang FF, Zheng FF, Wu XH, Yin YL, Chen G. Variations of thermophysical properties and heat transfer performance of nanoparticle-enhanced ionic liquids. R Soc Open Sci. 2019;6:182040. https://doi.org/10.1098/rsos.182040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Paul TC, Morshed AK, Fox EB, Khan JA. Enhanced thermophysical properties of NEILs as heat transfer fluids for solar thermal applications. Appl Therm Eng. 2017;110:1–9. https://doi.org/10.1016/j.applthermaleng.2016.08.004.

    Article  CAS  Google Scholar 

  16. Jorjani S, Mozaffarian M, Pazuki G. A novel nanodiamond based ionanofluid: experimental and mathematical study of thermal properties. J Mol Liq. 2018;271:211–9. https://doi.org/10.1016/j.molliq.2018.08.116.

    Article  CAS  Google Scholar 

  17. Cherecheş EI, Bejan D, Ibanescu C, Danu M, Minea AA. Ionanofluids with [C2mim][CH3SO3] ionic liquid and alumina nanoparticles: an experimental study on viscosity, specific heat, and electrical conductivity. Chem Eng Sci. 2021;229:116140. https://doi.org/10.1016/j.ces.2020.116140.

    Article  CAS  Google Scholar 

  18. Cherecheş EI, Minea AA. Experimental evaluation of electrical conductivity of nanofluids based on water–[C2mim][CH3SO3] ionic liquids mixtures and alumina nanoparticles. J Therm Anal Calorim. 2021;145:3151–7. https://doi.org/10.1007/s10973-020-09925-z.

    Article  CAS  Google Scholar 

  19. Chen W, Zou C, Li X. An investigation into the thermophysical and optical properties of SiC/ionic liquid nanofluid for direct absorption solar collector. Sol Energy Mater Sol Cells. 2017;163:157–63. https://doi.org/10.1016/j.solmat.2017.01.029.

    Article  CAS  Google Scholar 

  20. Zhang L, Liu J, He G, Ye Z, Fang X, Zhang Z. Radiative properties of ionic liquid-based nanofluids for medium to high-temperature direct absorption solar collectors. Sol Energy Mater Sol Cells. 2014;130:521–8. https://doi.org/10.1016/j.solmat.2014.07.040.

    Article  CAS  Google Scholar 

  21. Józ’wiak B, Boncel S. Rheology of ionanofluids—a review. J Mol Liq. 2020;302:112568. https://doi.org/10.1016/j.molliq.2020.112568.

    Article  CAS  Google Scholar 

  22. Shakeel A, Mahmood H, Farooq U, Ullah Z, Yasin S, Iqbal T, Chassagne C, Moniruzzaman M. Rheology of pure ionic liquids and their complex fluids: a review. ACS Sustain Chem Eng. 2019;7:13586–626. https://doi.org/10.1021/acssuschemeng.9b02232.

    Article  CAS  Google Scholar 

  23. Oster K, Hardacre C, Jacquemin J, Ribeiro APC, Elsinawi A. Understanding the heat capacity enhancement in ionic liquid-based nanofluids (ionanofluids). J Mol Liq. 2018;253:326–39. https://doi.org/10.1016/j.molliq.2018.01.025.

    Article  CAS  Google Scholar 

  24. Zhou SQ, Ni R. Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett. 2008;92:93123. https://doi.org/10.1063/1.2890431.

    Article  CAS  Google Scholar 

  25. Wang L, Tan Z, Meng S, Liang D, Li G. Enhancement of molar heat capacity of nanostructured Al2O3. J Nanopart Res. 2001;3:483–7.

    Article  CAS  Google Scholar 

  26. Paul TC, Morshed AKMM, Fox EB, Khan JA. Thermal performance of Al2O3 nanoparticle enhanced ionic liquids (NEILs) for concentrated solar power (CSP) applications. Int J Heat Mass Transf. 2015;85:585–94. https://doi.org/10.1016/j.ijheatmasstransfer.

    Article  CAS  Google Scholar 

  27. Hasse B, Lehmann J, Assenbaum D, Wasserscheid P, Leipertz A, Fröba AP. Viscosity, interfacial tension, density, and refractive index of ionic liquids [EMIM][MeSO3],[EMIM][MeOHPO2], [EMIM][OcSO4], and [BBIM][NTf2] in dependence on the temperature at atmospheric pressure. J Chem Eng Data. 2009;54(9):2576–83. https://doi.org/10.1021/je900134z.

    Article  CAS  Google Scholar 

  28. Freire MG, Teles ARR, Rocha MAA, Schröder B, Neves CMSS, Carvalho PJ, Evtuguin DV, Santos LMNBF, Coutinho JAP. Thermophysical characterization of ionic liquids able to dissolve biomass. J Chem Eng Data. 2011;56(12):4813–22. https://doi.org/10.1021/je200790q.

    Article  CAS  Google Scholar 

  29. Safarov J, Huseynova G, Bashirov M, Hassel E, Abdulagatov I. High temperatures and high pressures density measurements of 1-ethyl-3-methylimidazolium methanesulfonate and Tait-type equation of state. J Mol Liq. 2017;238:347–58. https://doi.org/10.1016/j.molliq.2017.05.013.

    Article  CAS  Google Scholar 

  30. Safarov J, Huseynova G, Bashirov M, Hassel E, Abdulagatov I. Viscosity of 1-ethyl-3-methylimidazolium methanesulfonate over a wide range of temperature and Vogel–Tamman–Fulcher model. Phys Chem Liq. 2018;56(6):703–17. https://doi.org/10.1016/j.molliq.2017.05.013.

    Article  CAS  Google Scholar 

  31. Cabaleiro D, Nimo J, Pastoriza-Gallego MJ, Piñeiro MM, Legido LL. Thermal conductivity of dry anatase and rutile nano-powders and ethylene and propylene glycol-based TiO2 nanofluids. J Chem Thermodyn. 2015;83:67–76. https://doi.org/10.1016/j.jct.2014.12.001.

    Article  CAS  Google Scholar 

  32. Kanti P, Sharma KV, Ramachandra CG, Panitapu B. Stability and thermophysical properties of fly ash nanofluid for heat transfer applications. Heat Transf. 2020;49(8):4722–37. https://doi.org/10.1002/htj.21849.

    Article  Google Scholar 

  33. Wang W, Wu Z, Li B, et al. A review on molten-salt-based and ionic-liquid-based nanofluids for medium-to-high temperature heat transfer. J Therm Anal Calorim. 2019;136:1037–51. https://doi.org/10.1007/s10973-018-7765-y.

    Article  CAS  Google Scholar 

  34. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11(2):151–70. https://doi.org/10.1080/08916159808946559.

    Article  CAS  Google Scholar 

  35. Raud R, Hosterman B, Diana A, Steinberg TA, Will G. Experimental study of the interactivity, specific heat, and latent heat of fusion of water-based nanofluids. Appl Therm Eng. 2017;117:164–8. https://doi.org/10.1016/j.applthermaleng.2017.02.033.

    Article  CAS  Google Scholar 

  36. Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83(1):97–117. https://doi.org/10.1017/s0022112077001062.

    Article  Google Scholar 

  37. Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf. 1999;13(4):474–80.

    Article  CAS  Google Scholar 

  38. Kanti PK, Sharma KV, Minea AA, Kesti V. Experimental and computational determination of heat transfer, entropy generation, and pressure drop under turbulent flow in a tube with fly ash-Cu hybrid nanofluid. Int J Therm Sci. 2021;167:107016. https://doi.org/10.1016/j.ijthermalsci.2021.107016.

    Article  CAS  Google Scholar 

  39. Yashawantha KM, Afzal A, Ramis MK, Ukkund SJ. Experimental investigation on physical and thermal properties of graphite nanofluids. AIP Conf Proc. 2018;2039:020057. https://doi.org/10.1063/1.5079016.

    Article  CAS  Google Scholar 

  40. Yashawantha KM, Vinod AV. ANN modelling and experimental investigation on effective thermal conductivity of ethylene glycol: water nanofluids. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09756-y.

    Article  Google Scholar 

  41. Wang W, Wu Z, Zhang Y, Li B, Sundén B. Thermophysical properties and convection heat transfer behaviour of ionic liquid [C4mim][NTf2] at medium temperature in helically corrugated tubes. Appl Therm Eng. 2018;142:457–65. https://doi.org/10.1016/j.applthermaleng.2018.07.035.

    Article  CAS  Google Scholar 

  42. Maxwell JC. A treatise on electricity and magnetism. London: Clarendon; 1973.

    Google Scholar 

  43. Babita SK, Sharma SM, Gupta SS. Preparation and evaluation of stable nanofluids for heat transfer application: a review. Exp Therm Fluid Sci. 2016;79:202–12. https://doi.org/10.1016/j.expthermflusci.2016.06.029.

    Article  CAS  Google Scholar 

  44. Zhang H, Qin S, Zhai Y, et al. The changes induced by pH in TiO2/water nanofluids: stability, thermophysical properties and thermal performance. Powder Technol. 2019. https://doi.org/10.1016/j.powtec.2020.09.004.

    Article  Google Scholar 

  45. Cherecheş EI, Prado JJ, Ibanescu C, et al. viscosity and isobaric specific heat capacity of alumina nanoparticle enhanced ionic liquids: an experimental approach. J Mol Liq. 2020;317:114020. https://doi.org/10.1016/j.molliq.2020.114020.

    Article  CAS  Google Scholar 

  46. Wang XJ, Li XF. The influence of pH on nanofluids’ viscosity and thermal conductivity. Chin Phys Lett. 2009;26(5):056601. https://doi.org/10.1088/0256-307x/26/5/056601.

    Article  Google Scholar 

  47. Hentschke R. On the specific heat capacity enhancement in nanofluids. Nanoscale Res Lett. 2016;11:88. https://doi.org/10.1186/s11671-015-1188-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bridges NJ, Visser AE, Fox EB. Potential of nanoparticle-enhanced ionic liquids (NEILs) as advanced heat-transfer fluids. Energy Fuels. 2011;25:4862–4. https://doi.org/10.1021/ef2012084.

    Article  CAS  Google Scholar 

  49. Jang SP, Choi SUS. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;44(21):4316–8. https://doi.org/10.1063/1.1756684.

    Article  CAS  Google Scholar 

  50. Leong KC, Yang C, Murshed SMS. A model for the thermal conductivity of nanofluids–the effect of the interfacial layer. J Nanopart Res. 2006;8:245–54. https://doi.org/10.1007/s11051-005-9018-9.

    Article  CAS  Google Scholar 

  51. Li H, Wang L, He Y, Hu Y, Zhu J, Jiang B. Experimental investigation of thermal conductivity and viscosity of ethylene glycol-based ZnO nanofluids. Appl Therm Eng. 2015;88:363–8. https://doi.org/10.1016/j.applthermaleng.2014.10.071.

    Article  CAS  Google Scholar 

  52. Prasher R, Song D, Wang J, Phelan P. Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett. 2006;89:133108–11. https://doi.org/10.1063/1.2356113.

    Article  CAS  Google Scholar 

  53. Lasance CJ, Simons RE. Advances in high-performance cooling for electronics. Electron Cool. 2005;11:22–39.

    Google Scholar 

  54. Mansour RB, Galanis N, Nguyen CT. Experimental study of mixed convection with watereAl2O3 nanofluid in an inclined tube with uniform wall heat flux. Appl Therm Eng. 2007;27:240–9. https://doi.org/10.1016/j.ijthermalsci.2010.03.016.

    Article  CAS  Google Scholar 

  55. Fendt S, Padmanabhan S, Blanch HW, Prausnitz JM. Viscosities of acetate or chloride-based ionic liquids and some of their mixtures with water or other common solvents. J Chem Eng Data. 2011;56:1–34. https://doi.org/10.1021/je1007235.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanti, P.K., Chereches, E.I., Minea, A.A. et al. Experiments on thermal properties of ionic liquid enhanced with alumina nanoparticles for solar applications. J Therm Anal Calorim 147, 13027–13038 (2022). https://doi.org/10.1007/s10973-022-11534-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11534-x

Keywords

Navigation