Skip to main content
Log in

ANN modelling and experimental investigation on effective thermal conductivity of ethylene glycol:water nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, ethylene glycol (EG)–water (35:65 %v)-based nanofluids have been prepared to study enhancement in thermal conductivity. Nanofluids containing nanoparticles of materials CuO, Al2O3 and TiO2 of different mass concentrations from 0.2 to 2% were prepared using ultrasonication. Thermal conductivity measurement was carried using KD2 Pro thermal properties analyser in the temperature range of 30–60 °C. The study investigated the effect of concentration of nanoparticles, temperature and nanoparticle material on effective thermal conductivity of nanofluids. The results showed a significant improvement in effective thermal conductivity due to the addition of nanoparticles to the base fluid. Correlations were developed for predicting the effective thermal conductivity considering each material separately, and a generalized correlation considering the three materials. Subsequently, ANN modelling was carried out for predicting the effective thermal conductivity of nanofluids and compared with developed correlations. The modelling work carried out in this study is more generalized as literature results were considered in addition to the results from the present study. ANN modelling predicts the effective thermal conductivity better than the proposed correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

C p :

Specific heat (kJ kg−1 K)

k :

Thermal conductivity (W m−1 K−1)

T :

Temperature (K)

m :

Mass of nanoparticles

cP:

Centi poise

EG:W:

Ethylene glycol and water mixture

DI:

Distilled water

ANN:

Artificial neural network

FF:

Feed forwards

MAD:

Mean average deviation

MSE:

Mean square error

MAPE:

Mean absolute percentage error

ASHRAE:

American Society for Heating Ventilation and Air-Conditioning Engineers

ρ :

Density (kg m−3)

µ :

Viscosity (cP)

ϕ m :

Mass fraction

\(\emptyset_{\text{v}}\) :

Volume fraction

nf:

Nanofluid

eff:

Effective

bf:

Base fluid

np:

Nanoparticles

References

  1. Srinivas T, Vinod AV. The effective thermal conductivity of water based nanofluids at different temperatures. J Test Eval. 2016;44:280–9.

    CAS  Google Scholar 

  2. Naik BAK, Vinod AV. Rheological behavior and effective thermal conductivity of non-Newtonian nanofluids. J Test Eval. 2018;46:445–57.

    CAS  Google Scholar 

  3. Yashawantha KM, Afzal A, Ramis MK, Shareefraza JU. Experimental investigation on physical and thermal properties of graphite nanofluids. In: AIP conference proceedings. 2018. p. 020057.

  4. Yashawantha KM, Asif A, Ravindra Babu G, Ramis MK. Rheological behavior and thermal conductivity of graphite–ethylene glycol nanofluid. J Test Eval. 2021;49:Published ahead of print.

  5. Ukkund SJ, Ashraf M, Udupa AB, Gangadharan M, Pattiyeri A, Marigowda YK, et al. Synthesis and characterization of silver nanoparticles from Fusarium oxysporum and investigation of their antibacterial activity. Mater Today Proc. 2019;9:506–14.

    CAS  Google Scholar 

  6. Masuda H, Ebata A, Teramae K. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei. 1993;7:227–33.

    CAS  Google Scholar 

  7. Michael M, Zagabathuni A, Ghosh S, Pabi SK. Thermo-physical properties of pure ethylene glycol and water–ethylene glycol mixture-based boron nitride nanofluids: an experimental investigation. J Therm Anal Calorim. 2019;137:369–80.

    CAS  Google Scholar 

  8. Barbés B, Páramo R, Blanco E, Pastoriza-Gallego MJ, Piñeiro MM, Legido JL, et al. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J Therm Anal Calorim. 2013;111:1615–25.

    Google Scholar 

  9. Hemmat Esfe M, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119:1817–24.

    CAS  Google Scholar 

  10. Hemmat Esfe M, Saedodin S, Asadi A, Karimipour A. Thermal conductivity and viscosity of Mg(OH)2–ethylene glycol nanofluids. J Therm Anal Calorim. 2015;120:1145–9.

    CAS  Google Scholar 

  11. Meyer JP, Adio S, Sharifpur M, Nwosu PN. The viscosity of nanofluids: a review of the theoretical, empirical and numerical models. Heat Transf Eng. 2015;37(5):387–421.

    Google Scholar 

  12. Ramesh G, Prabhu NK. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment. Nanoscale Res Lett. 2011;6:334.

    PubMed  PubMed Central  Google Scholar 

  13. Sajid MU, Ali HM. Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew Sustain Energy Rev. 2019;103:556–92.

    CAS  Google Scholar 

  14. Huminic G, Huminic A. Application of nanofluids in heat exchangers: a review. Renew Sustain Energy Rev. 2012;16:5625–38.

    CAS  Google Scholar 

  15. Ghozatloo A, Rashidi A, Shariaty-Niassar M. Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger. Exp Thermal Fluid Sci. 2014;53:136–41.

    CAS  Google Scholar 

  16. Shahrul IM, Mahbubul IM, Saidur R, Sabri MFM. Experimental investigation on Al2O3–W, SiO2–W and ZnO–W nanofluids and their application in a shell and tube heat exchanger. Int J Heat Mass Transf. 2016;97:547–58.

    CAS  Google Scholar 

  17. Kareemullah M, Chethan KM, Fouzan MK, Darshan BV, Kaladgi AR, Prashanth MB, et al. Heat transfer analysis of shell and tube heat exchanger cooled using nanofluids. Recent Patents Mech Eng. 2019;12:350–6.

    CAS  Google Scholar 

  18. Khairul MA, Saidur R, Rahman MM, Alim MA, Hossain A, Abdin Z. Heat transfer and thermodynamic analyses of a helically coiled heat exchanger using different types of nanofluids. Int J Heat Mass Transf. 2013;67:398–403.

    CAS  Google Scholar 

  19. Fule PJ, Bhanvase BA, Sonawane SH. Experimental investigation of heat transfer enhancement in helical coil heat exchangers using water based CuO nanofluid. Adv Powder Technol. 2017;28:2288–94.

    CAS  Google Scholar 

  20. Teng TP, Hsiao TC, Chung CC. Characteristics of carbon-based nanofluids and their application in a brazed plate heat exchanger under laminar flow. Appl Therm Eng. 2019;146:160–8.

    CAS  Google Scholar 

  21. Wang Z, Wu Z, Han F, Wadsö L, Sundén B. Experimental comparative evaluation of a graphene nanofluid coolant in miniature plate heat exchanger. Int J Therm Sci. 2018;130:148–56.

    CAS  Google Scholar 

  22. Eastman JA, Choi US, Li S, Thompson LJ, Lee S. Enhanced thermal conductivity through the development of nanofluids. In: Materials research society symposium—proceedings. 1997. p. 3–11.

  23. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78:718–20.

    CAS  Google Scholar 

  24. Yu W, Xie H, Chen L, Li Y. Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Thermochim Acta. 2009;491:92–6.

    CAS  Google Scholar 

  25. Azmi WH, Hamid KA, Usri NA, Mamat R, Sharma KV. Heat transfer augmentation of ethylene glycol: water nano fluids and applications—a review. Int Commun Heat Mass Transfr. 2016;75:13–23.

    CAS  Google Scholar 

  26. Vajjha RS, Das DK. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf. 2009;52:4675–82.

    CAS  Google Scholar 

  27. Kole M, Dey TK. Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids. J Appl Phys. 2013;113:084307.

    Google Scholar 

  28. Reddy MCS, Rao VV. Experimental studies on thermal conductivity of blends of ethylene glycol–water-based TiO2 nanofluids. Int Commun Heat Mass Transf. 2013;46:31–6.

    CAS  Google Scholar 

  29. Sundar LS, Farooky MH, Sarada SN, Singh MK, Farooky H, Sarada SN, et al. Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids. Int Commun Heat Mass Transf. 2013;41:41–6.

    CAS  Google Scholar 

  30. Sundar LS, Ramana EV, Singh MK, Sousa ACM. Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nano fluids for heat transfer applications: an experimental study. Int Commun Heat Mass Transf. 2014;56:86–95.

    Google Scholar 

  31. Serebryakova MA, Dimov SV, Bardakhanov SP, Novopashin SA. Thermal conductivity, viscosity and rheology of a suspension based on Al2O3 nanoparticles and mixture of 90% ethylene glycol and 10% water. Int J Heat Mass Transf. 2015;83:187–91.

    CAS  Google Scholar 

  32. Guo Y, Zhang T, Zhang D, Wang Q. Experimental investigation of thermal and electrical conductivity of silicon oxide nanofluids in ethylene glycol/water mixture. Int J Heat Mass Transf. 2018;117:280–6.

    CAS  Google Scholar 

  33. Elias MM, Mahbubul IM, Saidur R, Sohel MR, Shahrul IM, Khaleduzzaman SS, et al. Experimental investigation on the thermo-physical properties of Al2O3 nanoparticles suspended in car radiator coolant. Int Commun Heat Mass Transf. 2014;54:48–53.

    CAS  Google Scholar 

  34. Hamid KA, Azmi WH, Mamat R, Usri NA. Thermal conductivity enhancement of TiO2 nanofluid in water and ethylene glycol (EG) mixture. Indian J Pure Appl Phys. 2016;54:651–5.

    Google Scholar 

  35. Chiam HW, Azmi WH, Usri NA, Mamat R, Adam NM. Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture. Exp Therm Fluid Sci. 2017;81:420–9.

    CAS  Google Scholar 

  36. Krishnakumar TS, Sheeba A, Mahesh V, Prakash MJ, Jose Prakash M. Heat transfer studies on ethylene glycol/water nanofluid containing TiO2 nanoparticles. Int J Refrig. 2019;102:55–61.

    CAS  Google Scholar 

  37. Maxwell JC. Electricity and magnetism. Oxford: Clarendon; 1873.

    Google Scholar 

  38. Hamilton RL, Crosser OK. Thermal Conductivity of heterogeneous two-component systems. In: Industrial & engineering chemistry fundamentals, vol. 1. American Chemical Society; 1962. p. 187–91.

  39. Lu S-Y, Lin H. Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity. J Appl Phys. 1996;79:6761–9.

    CAS  Google Scholar 

  40. Bhattacharya P, Saha SK, Yadav A, Phelan PE, Prasher RS. Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. J Appl Phys. 2004;95:6492–4.

    CAS  Google Scholar 

  41. Hojjat M, Etemad SG, Bagheri R, Thibault J. Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network. Int J Heat Mass Transf. 2011;54:1017–23.

    CAS  Google Scholar 

  42. Ariana MA, Vaferi B, Karimi G. Prediction of thermal conductivity of alumina water-based nanofluids by artificial neural networks. Powder Technol. 2015;278:1–10.

    CAS  Google Scholar 

  43. Hemmat Esfe M, Afrand M, Yan WM, Akbari M. Applicability of artificial neural network and nonlinear regression to predict thermal conductivity modeling of Al2O3–water nanofluids using experimental data. Int Commun Heat Mass Transf. 2015;66:246–9.

    CAS  Google Scholar 

  44. Hemmat Esfe M, Rostamian H, Afrand M, Karimipour A, Hassani M. Modeling and estimation of thermal conductivity of MgO–water/EG (60:40) by artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;68:98–103.

    CAS  Google Scholar 

  45. Tahani M, Vakili M, Khosrojerdi S. Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid. Int Commun Heat Mass Transf. 2016;76:358–65.

    CAS  Google Scholar 

  46. Ahmadloo E, Azizi S. Prediction of thermal conductivity of various nanofluids using artificial neural network. Int Commun Heat Mass Transf. 2016;74:69–75.

    CAS  Google Scholar 

  47. Wang X, Yan X, Gao N, Chen G. Prediction of thermal conductivity of various nanofluids with ethylene glycol using artificial neural network. J Therm Sci. 2019;1–9.

  48. Hemmat Esfe M, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;118:287–94.

    CAS  Google Scholar 

  49. Zhao N, Li Z. Experiment and artificial neural network prediction of thermal conductivity and viscosity for alumina–water nanofluids. Materials. 2017;10:552.

    PubMed Central  Google Scholar 

  50. Hemmat Esfe M. Designing an artificial neural network using radial basis function (RBF-ANN) to model thermal conductivity of ethylene glycol–water-based TiO2 nanofluids. J Therm Anal Calorim. 2017;127:2125–31.

    CAS  Google Scholar 

  51. ASHRAE. Handbook—Fundamentals (SI Edition), American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. 2017.

  52. Yang L, Mao M, Huang J, Ji W. Enhancing the thermal conductivity of SAE 50 engine oil by adding zinc oxide nano-powder: an experimental study. Powder Technol. 2019;356:335–41.

    CAS  Google Scholar 

  53. Yang L, Ji W, Zhang Z, Jin X. Thermal conductivity enhancement of water by adding graphene nano-sheets: consideration of particle loading and temperature effects. Int Commun Heat Mass Transf. 2019;109:104353.

    CAS  Google Scholar 

  54. Yang L, Ji W, Huang J, Xu G. An updated review on the influential parameters on thermal conductivity of nano-fluids. J Mol Liq. 2019;296:111780.

    CAS  Google Scholar 

  55. Gangadevi R, Vinayagam BK, Senthilraja S. Effects of sonication time and temperature on thermal conductivity of CuO/water and Al2O3/water nanofluids with and without surfactant. Mater Today Proc. 2018;5:9004–11.

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support by Aeronautical Research and Development (AR&DB) under Grant No. of ARDB/01/2031857/M/I is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Venu Vinod.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yashawantha, K.M., Vinod, A.V. ANN modelling and experimental investigation on effective thermal conductivity of ethylene glycol:water nanofluids. J Therm Anal Calorim 145, 609–630 (2021). https://doi.org/10.1007/s10973-020-09756-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09756-y

Keywords

Navigation