Skip to main content
Log in

Different inhibition mechanisms and safety effects of TPU and EVA on thermal decomposition of RDX

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The combination of energetic materials (EMs) and binders into polymer-bonded explosives (PBX) is an important method for modifying explosives. To explore the effect of thermoplastic polyurethane (TPU) and ethylene–vinyl acetate copolymer (EVA) on pyrolysis and safety performance on EMs, the RDX-based PBXs were prepared by mechanical mixing method, direct method and microencapsulation method, respectively. Scanning electron microscope (SEM) and differential scanning calorimetry (DSC) were used to find out composites for the possibility of further application. The PBXs samples coated by TPU or EVA using the direct method with the maximal enthalpy of mixing were selected and characterized by X-ray powder diffraction (XRD) and transform infrared spectroscopy (FTIR). The thermal decomposition tests of RDX and the two prepared PBXs were further carried out by thermogravimetry/infrared/mass (TG/IR/MS). The impact sensitivity and laser ignition tests were also performed to determine the mechanical sensitivity effect and ignition influence of the two binders on RDX. The result indicated that TPU increased the activation energy of RDX and inhibited the subsequent pyrolysis process. EVA significantly increased the decomposition peak temperature, indicating that it can improve the initial thermal stability of EMs. Both TPU and EVA improve the ignition performance, but EVA reduces the impact sensitivity. Therefore, EVA exhibits better performance than TPU in RDX-based PBXs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zawadzka-Małota I. Testing of mining explosives with regard to the content of carbon oxides and nitrogen oxides in their detonation products. J Sustain Min. 2015;14:173–8. https://doi.org/10.1016/j.jsm.2015.12.003.

    Article  Google Scholar 

  2. Anniyappan M, Talawar MB, Sinha RK, Sinha KPS. Review on advanced energetic materials for insensitive munition formulations. Combust Explos Shock Waves. 2020;56:495–519. https://doi.org/10.1134/S0010508220050019.

    Article  Google Scholar 

  3. Talawar MB, Jangid SK, Nath T, Sinha RK, Asthana SN. New directions in the science and technology of advanced sheet explosive formulations and the key energetic materials used in the processing of sheet explosives: emerging trends. J Hazard Mater. 2015;300:307–21. https://doi.org/10.1016/j.jhazmat.2015.07.013.

    Article  CAS  PubMed  Google Scholar 

  4. Van der Heijden AEDM, Bouma RHB, Van der Steen Propellants AC. Physicochemical parameters of nitramines influencing shock sensitivity. Propell Explos Pyrotech. 2004;29:304–13. https://doi.org/10.1002/prep.200400058.

    Article  CAS  Google Scholar 

  5. Ahmad SR, Cartwright M. Laser ignition of energetic materials. UK: John Wiley Sons; 2015. p. 91–115.

    Google Scholar 

  6. Wang DX, Chen SS, Jin SH, Shu QH, Jiang ZM, Shang FQ, Li JX. Investigation into the coating and desensitization effect on HNIW of Paraffin Wax/Stearic acid composite system. J Energetic Mater. 2015;34:26–37. https://doi.org/10.1080/07370652.2014.993049.

    Article  CAS  Google Scholar 

  7. Yang ZJ, Ding L, Wu P, Liu YG, Nie FD, Huang FL. Fabrication of RDX, HMX and CL-20 based microcapsules via in situ polymerization of melamine-formaldehyde resins with reduced sensitivity. Chem Eng J. 2015;268:60–6. https://doi.org/10.1016/j.cej.2015.01.024.

    Article  CAS  Google Scholar 

  8. Hwang K, Mun H, Jung JY, Cho HL, Kim SJ, Min BS, Jeon HB, Kim W. Nitramine-group-containing energetic prepolymer: synthesis, and its properties as a binder for propellant. Polymers. 2019;11:1966–80. https://doi.org/10.3390/polym11121966.

    Article  CAS  PubMed Central  Google Scholar 

  9. Hu YB, Yuan S, Li XJ, Liu M, Sun FX, Yang YP, Hao GZ, Jiang W. Preparation and characterization of Nano-CL-20/TNT Cocrystal explosives by mechanical ball-milling method. ACS Omega. 2020;5:17761–6. https://doi.org/10.1021/acsomega.0c02426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eslami A, Hosseini SG, Bazrgary M. Improvement of thermal decomposition properties of ammonium perchlorate particles using some polymer coating agents. J Therm Anal Calorim. 2013;113:721–30. https://doi.org/10.1007/s10973-012-2784-6.

    Article  CAS  Google Scholar 

  11. Guillevic M, Pichot V, Cooper J, Coquerel G, Borne L, Spitzer D. Optimization of an antisolvent method for rdx recrystallization: influence on particle size and internal defects. Cryst Growth Des. 2020;20:130–8. https://doi.org/10.1021/acs.cgd.9b00893.

    Article  CAS  Google Scholar 

  12. Zhang MH, Tan YX, Zhao X, Zhang JH, Huang SL, Zhai ZH, Liu Y, Yang ZJ. Seeking a novel energetic co-crystal strategy through the interfacial self-assembly of CL-20 and HMX nanocrystals. Cryst Eng Comm. 2020;22:61–7. https://doi.org/10.1039/c9ce01447k.

    Article  CAS  Google Scholar 

  13. Li YB, Yang ZJ, Ding L, Pan LP, Zhang JH, Zheng X, Lin CM. Feasible self-healing CL-20 based PBX: employing a novel polyurethaneurea containing disulfide bonds as polymer binder. React Funct Polym. 2019;144: 104342. https://doi.org/10.1016/j.reactfunctpolym.2019.104342.

    Article  CAS  Google Scholar 

  14. Chi JJ, Xing XH, Zhao C, Wang JW, Chang WL, Xia Y, Feng ML. Application of insensitive agent in energetic materials. Chem Propell Polym Mater. 2015;13:20–6. https://doi.org/10.16572/j.issn.1672-2191.2015.01.025.

    Article  CAS  Google Scholar 

  15. Shi ZQ, Wang H, Lu DW. Preparation and properties of PEDOT/RDX composite particles. J Propulsion Technol. 2017;38:2628–33. https://doi.org/10.13675/j.cnki.tjjs.2017.11.028.

    Article  CAS  Google Scholar 

  16. Wang J, Sun X, Zhou XL. Study on RDX Encapsulated by higher fatty acid esters. Chin J Energ Mater. 2015;23:527–31. https://doi.org/10.11943/j.issn.1006-9941.2015.06.004.

    Article  CAS  Google Scholar 

  17. Jia XL, Cao Q, Guo WJ, Li C, Shen JJ, Geng XH, Wang JY, Hou CH. Synthesis, thermolysis, and solid spherical of RDX/PMMA energetic composite materials. J Mater Sci Mater Electron. 2019;30:20166–73. https://doi.org/10.1007/s10854-019-02399-2.

    Article  CAS  Google Scholar 

  18. Wu PF, Sun HY, Zhang FY, Hong ZY, Song CG, Yang Y, Li XD. The effect of binder on the properties of RDX/Al composite energetic materials. Sci Technol Eng. 2021;21:10263–9.

    Google Scholar 

  19. Li S. (2014) Comparative study on desensitization effect of different binders on RDX. Master Thesis. North University of China, UK

  20. Yan QL, Zeman S, Elbeih A. Thermal behavior and decomposition kinetics of Viton A bonded explosives containing attractive cyclic nitramines. Thermochim Acta. 2013;562:56–64. https://doi.org/10.1016/j.tca.2013.03.041.

    Article  CAS  Google Scholar 

  21. Seyfi J, Panahi-Sarmad M, OraeiGhodousi A, Goodarzi V, Khonakdar HA, Asefnejad A, Shojaei S. Antibacterial superhydrophobic polyvinyl chloride surfaces via the improved phase separation process using silver phosphate nanoparticles. Colloids Surf B. 2019;183: 110438. https://doi.org/10.1016/j.colsurfb.2019.110438.

    Article  CAS  Google Scholar 

  22. Yu R, Bao JJ, Chen TT, Zou BK, Wen ZY, Guo XX, Chen CH. Solid polymer electrolyte based on thermoplastic polyurethane and its application in all-solid-state lithium ion batteries. Solid State Ion. 2017;309:15–21. https://doi.org/10.1016/j.ssi.2017.06.013.

    Article  CAS  Google Scholar 

  23. Li YB, Huang H, Pan LP, Zhang JH, Li JS, Zheng BH. Study on the coating sensitivity and application of ammonium Perchlorate. Chin J Energ Mater. 2014;22:792–7. https://doi.org/10.11943/j.issn.1006-9941.2014.06.015.

    Article  CAS  Google Scholar 

  24. Li YB, Huang HJ, Huang H, Li SB, Guan LF. High quality HMX package reduction technology. Chin J Energ Mater. 2012;20:680–4. https://doi.org/10.3969/j.issn.1006-9941.2012.06.004.

    Article  CAS  Google Scholar 

  25. Cibulková Z, Vykydalová A, Plaček V, Šimon P. Influence of gamma radiation and temperature on the ageing of EVA cable insulation studied by DSC. Thermochim Acta. 2018;668:28–32. https://doi.org/10.1016/j.tca.2018.08.009.

    Article  CAS  Google Scholar 

  26. Tao J, Wang XF, Zhao SX, Wang CL, Han ZX, Diao XQ. Numerical calculation and experimental verification of the effect of polymer binder on the performance of RDX-based aluminum explosive. Chin J Explos Propell. 2015;38:59–63. https://doi.org/10.14077/j.issn.1007-7812.2015.03.011.

    Article  CAS  Google Scholar 

  27. Li XD, Sun HY, Song CG, Zhang XM, Yang W, Wang JY. Effect of binder on the properties of CL-20/FOX-7 based PBX. Chin J Explos Propell. 2020;43:51–6. https://doi.org/10.14077/j.issn.1007-7812.201901024.

    Article  Google Scholar 

  28. Feng XS, Ren XN. Effect of binder on thermal decomposition of boron-containing metallized explosives. Explosive Materials. 2021;2:12–7. https://doi.org/10.3969/j.issn.1001-8352.2021.02.003

  29. Chen LL, (2010) Preparation and properties of modified thermoplastic polyurethane Adhesive. Master Thesis. Wuhan University of Technology

  30. Yang ZF, Zhao FQ, Li X. Progress in compatibility evaluation of energetic materials. J Sichuan Ordnance. 2015;36:141–6. https://doi.org/10.11809/scbgxb2015.03.037.

    Article  CAS  Google Scholar 

  31. Han BX. Study on the compatibility and thermal decomposition mechanism of Cr2O3/Nitrocellulose. Acta Phys -Chim Sin. 2020;36:1907020. https://doi.org/10.3866/PKU.WHXB201907020.

    Article  CAS  Google Scholar 

  32. Chen XL, Wang WD, Li SX, Qian Y, Jiao CM. Synthesis of TPU/TiO2 nanocomposites by molten blending method. J Therm Anal Calorim. 2018;132:793–803. https://doi.org/10.1007/s10973-017-6944-6.

    Article  CAS  Google Scholar 

  33. Sefadi JS (2015) Preparation and properties of conductive polymer nanocomposites. Doctoral Thesis. Sol Plaatje University

  34. Zhang R, He XR, Chen Q, Meng LY. Non-Isothermal crystallization behaviors of Ethylene Vinyl Acetate Copolymer and Ethylene Vinyl Acetate Copolymer-Graft-Maleic Anhydride. J Macromol Sci B. 2015;54:1515–31. https://doi.org/10.1080/00222348.2015.1103394.

    Article  CAS  Google Scholar 

  35. Yu D, Yu LH, Jia P, Ju HB, Luo H, Xu JH, Koyama S. Microstructure, mechanical and tribological properties of TaCN composite films by reactive magnetron sputtering. Ceram Int. 2020;46:20683–94. https://doi.org/10.1016/j.ceramint.2020.04.205.

    Article  CAS  Google Scholar 

  36. Wang XJ, Liu ZT, Fu Y, Zhu Y, Chen L, Yang J, Chen Q, Xu B, Chen FY, Liao X. Bio-inspired synthesis of RDX@polydopamine@TiO2 double layer core–shell energetic composites with reduced impact and electrostatic discharge sensitivities. Appl Surf Sci. 2021;567: 150729. https://doi.org/10.1016/j.apsusc.2021.150729.

    Article  CAS  Google Scholar 

  37. Chen L, Cao XF, Chen Y, Li Q, Wang YB, Wang XJ, Qin Y, Cao X, Liu J, Shao ZQ, He WD. Biomimetic-Inspired One-step strategy for improvement of interfacial interactions in cellulose Nanofibers by modification of the surface of Nitramine Explosives. Langmuir. 2021;37:8486–97. https://doi.org/10.1021/acs.langmuir.1c00874.

    Article  CAS  PubMed  Google Scholar 

  38. Mi HY, Salick MR, Jing X, Jacques BR, Crone WC, Peng XF, Turng LS. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater Sci Eng C. 2013;33:4767–76. https://doi.org/10.1016/j.msec.2013.07.037.

    Article  CAS  Google Scholar 

  39. Shen LG, Shao CR, Li RJ, Xu YC, Li JX, Lin HJ. Preparation and characterization of ethylene–vinyl acetate copolymer (EVA)-magnesium hydroxide (MH)-hexaphenoxycyclotriphosphazene (HPCTP) composite flame-retardant materials. Polym Bull. 2019;76:2399–410. https://doi.org/10.1007/s00289-018-2500-1.

    Article  CAS  Google Scholar 

  40. Yan QL, Zeman S, Šelešovský J, Svoboda R, Elbeih A. Thermal behavior and decomposition kinetics of Formex-bonded explosives containing different cyclic nitramines. J Therm Anal Calorim. 2013;111:1419–30. https://doi.org/10.1007/s10973-012-2492-2.

    Article  CAS  Google Scholar 

  41. Zhao WA, A (2019) New method for simulating combustion characteristics of Nitroamine hazardous chemicals by multi-component fuel substitution. Master Thesis. Nanjing University of Science and Technology

  42. Li YC, Yan S, Chen Y. TG-DSC-QMS-FTIR synchronous kinetics of RDX thermal decomposition. Chin J Explos Propell. 2009;32:32–5. https://doi.org/10.14077/j.issn.1007-7812.2009.01.012.

    Article  CAS  Google Scholar 

  43. Liu ZR, Liu Y, Fan XP, Zhao FQ. Thermal decomposition of RDX and HMX III Decomposition mechanism. Chin J Explos Propell. 2006;29:14–8. https://doi.org/10.14077/j.issn.1007-7812.2006.04.004.

    Article  Google Scholar 

  44. Oyumi Y, Bril TB (1985) Thermal decomposition of energetic materials 3.*A high-rate in situ FTIR study of the thermolysis of RDX and HMX with pressure and heating rate as variables. Combust Flame 62: 213–224

  45. Zhang T, Li CC, Wang W, Guo ZQ, Pang AM, Ma HX. Construction of three-dimensional Hematite/Graphene with effective catalytic activity for the thermal decomposition of CL-20. Acta Phys -Chim Sin. 2020;36:1905048–56. https://doi.org/10.3866/PKU.WHXB201905048.

    Article  CAS  Google Scholar 

  46. Hu RZ, Zhao FQ, Gao HX. Basis and application of calorimetry. Beijing: Science Press; 2011.

    Google Scholar 

  47. Fathollahi M, Mohammadi B, Mohammadi J. Kinetic investigation on thermal decomposition of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) nanoparticles. Fuel. 2013;104:95–100. https://doi.org/10.1016/j.fuel.2012.09.075.

    Article  CAS  Google Scholar 

  48. Zhang XT, Zhang ZX, Huang J, Yan L, Guo Y, Lin HL, Chen DQ, Bian J. Research progress on preparation and properties of thermoplastic polyurethane-based thermal conductive nanocomposites. Eng Plastics Appl. 2021;49:161–5. https://doi.org/10.3969/j.issn.1001-3539.2021.03.030.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate for the support from Key Science and Technology Innovation Team of Shaanxi Province (2022TD-33) and gratefully acknowledge the financial support of National Natural Science Foundation of China (21673179, 12002266).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conceptualization and methodology. Data collection, curation, analysis, and presentation were performed by Jing An. Material preparation was provided by Ronghui Ju, Yiming Luo, Hao Luo, Haixia Ma. Jing An wrote the first draft of the manuscript. Haixia Ma, Jing An and Jianyou Zeng engaged in reviewing and editing of the manuscript.

Corresponding authors

Correspondence to Yiming Luo or Haixia Ma.

Ethics declarations

Conflict of interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 11 KB)

Supplementary file2 (PDF 635 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, J., Ju, R., Zeng, J. et al. Different inhibition mechanisms and safety effects of TPU and EVA on thermal decomposition of RDX. J Therm Anal Calorim 147, 11261–11272 (2022). https://doi.org/10.1007/s10973-022-11370-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11370-z

Keywords

Navigation