Skip to main content
Log in

Preparation of nano-RDX-based PBX and its thermal decomposition properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The nano-RDX-based plastic bonded explosives (PBXs) are prepared by solution–water suspension method. The thermal decomposition characteristics and the thermal stability of the as-prepared PBX are studied. The results show that the molding powder of nano-RDX-based PBX is mainly distributed in 60–30 meshes, and the molding powder of micron-sized RDX-based PBX is mainly distributed in 30–10 meshes. Compared with the micron-sized RDX-based PBX, the thermal decomposition peak temperature of nano-RDX-based PBX is lower, and the apparent activation energy is reduced by about 1.9% to 127.1 kJ mol−1. Furthermore, the gas volume of nano-RDX-based two PBX is a bit larger, which is consistent with the estimation result based on isothermal kinetics temperature. Because of the little difference, we can still get that the thermal stability of the two explosives is the same to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Singh A, Sharma TC, Kishore P. Thermal degradation kinetics and reaction models of 1,3,5-triamino-2,4,6-trinitrobenzene-based plastic-bonded explosives containing fluoropolymer matrices. J Therm Anal Calorim. 2017;129(3):1403–14.

    Article  CAS  Google Scholar 

  2. Kumar M, Ladyman MK, Mai N, Temple T, Coulon F. Release of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) from polymer-bonded explosives (PBXN-109) into water by artificial weathering. Chemosphere. 2017;169:604–8.

    Article  CAS  Google Scholar 

  3. Elbeih A, Abd-Elghany M, Elshenawy T. Application of vacuum stability test to determine thermal decomposition kinetics of nitramines bonded by polyurethane matrix. Acta Astronaut. 2017;132:124–30.

    Article  CAS  Google Scholar 

  4. Antoine EDM, Richard HB. Characterization of granular and polymer-embedded RDX grades: floret tests. Propellants Explos Pyrotech. 2016;41(2):360–6.

    Article  Google Scholar 

  5. Jangid SK, Singh MK, Solanki VJ, Talawar MB, Nath T, Sinha RK, Asthana S. 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX)-based sheet explosive formulation with a hybrid binder system. Propellants Explos Pyrotech. 2016;41(2):377–82.

    Article  CAS  Google Scholar 

  6. Jangid SK, Singh MK, Solanki VJ, Pandit G, Nath T, Sinha RK. Experimental studies on a high energy sheet explosive based on RDX and bis(2,2-dinitropropyl) formal/acetal (BDNPF/A). Cent Eur J Energ Mater. 2016;13(3):557–66.

    Article  Google Scholar 

  7. Liu R, Yang L, Zhou ZN, Zhang TL. Thermal stability and sensitivity of RDX-based aluminized explosives. J Therm Anal Calorim. 2014;115(2):1939–48.

    Article  CAS  Google Scholar 

  8. Talawar MB, Jangid SK, Nath T, Sinha RK, Asthana SN. New directions in the science and technology of advanced sheet explosive formulations and the key energetic materials used in the processing of sheet explosives: Emerging trends. J Hazard Mater. 2015;300:307–21.

    Article  CAS  Google Scholar 

  9. Pei JF, Zhao FQ, Lu HL, Song XD, Zhou R, Yuan ZF, Zhang J, Chen JB. Compatibility study of BAMO–GAP copolymer with some energetic materials. J Therm Anal Calorim. 2016;124(3):1301–7.

    Article  CAS  Google Scholar 

  10. Kohga M, Naya T. Thermal decomposition behaviors and burning characteristics of AN/RDX-based composite propellants supplemented with MnO2 and Fe2O3. J Energ Mater. 2015;33(4):288–304.

    Article  CAS  Google Scholar 

  11. Jiao QJ, Zhu YL, Xing JC, Ren H, Huang H. Thermal decomposition of RDX/AP by TG–DSC–MS–FTIR. J Therm Anal Calorim. 2014;116(3):1125–31.

    Article  CAS  Google Scholar 

  12. McDonald B, Marshall C. Aging-Induced electrical resistance changes in an RDX-loaded nitrate ester propellant with polyglycol adipate (PGA) and polyethylene glycol (PEG) cross-linked binders subject to various thermal and moisture environmental conditions. J Energ Mater. 2016;35(1):77–94.

    Article  Google Scholar 

  13. Chen M, Zhang YB, Dong CY, Xiao ZG. On-line auto mass measurement of residual solvent mass and its influence on mechanical properties of propellants. Propellants Explos Pyrotech. 2016;41(6):972–7.

    Article  CAS  Google Scholar 

  14. Wang JY, Shi XF, Li XD. Preparation and properties of RDX-nitrocellulose microspheres. Cent Eur J Energ Mater. 2016;13(4):871–81.

    Article  Google Scholar 

  15. Yan QL, Zhao FQ, Kuo KK, Zhang XH, Zeman S, DeLuca LT. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog Energy Combust Sci. 2016;57:75–136.

    Article  Google Scholar 

  16. Xu SY, Zhao FQ, Yi JH, Hu RZ, Gao HX, Li SW, Hao HX, Pei Q. Thermal behavior and non-isothermal decomposition reaction kinetics of composite modified double base propellant containing CL-20. Acta Phys Chim Sin. 2008;24(8):1371–7.

    CAS  Google Scholar 

  17. Song XL, Li FS. Dependence of particle size and size distribution on mechanical sensitivity and thermal stability of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine. Def Sci J. 2009;59(1):37–42.

    Article  CAS  Google Scholar 

  18. Song XL, Li FS, Zhang JL, Guo XD, An CW, Wang Y. Influence of particle size, morphology and size distribution on the safety and thermal decomposition properties of RDX. J Solid Rocket Technol. 2008;31(2):168–72.

    CAS  Google Scholar 

  19. Song XL, Wang Y, An CW, Guo XD, Li FS. Dependence of particle morphology and size on the mechanical sensitivity and thermal stability of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. J Hazard Mater. 2008;159(2–3):222–9.

    Article  CAS  Google Scholar 

  20. Siviour CR, Gifford MJ, Walley SM, Proud WG, Field JE. Particle size effects on the mechanical properties of a polymer bonded explosive. J Mater Sci. 2004;39(4):1255–8.

    Article  CAS  Google Scholar 

  21. Zhang XN, Xu GG, Xu JP, Wang WM. A study about impact sensitivity of ultrafine HMX and RDX. Chin J Explos Propellants. 1999;22(1):33–6.

    CAS  Google Scholar 

  22. Liu J, Wang LX, Li Q, Zeng JB, Zhou S, Jiang W, Li FS. Preparation and characterization of insensitive nano RDX. Chin J Explos Propellants. 2012;35(6):46–50.

    Google Scholar 

  23. Kissinger HH. Reaction kinetics in different thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially sponsored by the National Natural Science Foundation of China (NSFC, 51606102) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Bao, Xz., Rong, Yb. et al. Preparation of nano-RDX-based PBX and its thermal decomposition properties. J Therm Anal Calorim 131, 2693–2698 (2018). https://doi.org/10.1007/s10973-017-6731-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6731-4

Keywords

Navigation