Skip to main content
Log in

Electrospray preparation and thermal properties of the composites based on RDX

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Composite explosives based on 1,3,5-trinitro-1,3,5-triazinane (RDX) with different additives were prepared by electrospray method. The morphology and particle size, crystal structure and thermal decomposition properties were characterized by the scanning electron microscope, the laser particle size analyzer, the X-ray diffractometer and the differential scanning calorimeter, respectively. In terms of the morphologies of the composites, the particle sizes were in the range of 1–4 μm. The crystal types of the RDX/PVAc, RDX/PVB, RDX/F2604 and RDX/DOS composites were similar to those of raw RDX. The apparent activation energy (145.678 kJ mol−1) and the critical temperature (486.49 K) of the RDX/PVB composites were found to be the lowest among all involved composites. The compatibility of the RDX/F2604 and RDX/DOS composites was both in level A. The thermal stabilities of the composites decreased in the order RDX/F2604 > RDX/DOS > RDX/PVAc > RDX/PVB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pelikan V, Zeman S, Yan QL, et al. Concerning the shock sensitivity of cyclic nitramines incorporated into a polyisobutylene matrix. Cent Eur J Energ Mater. 2014;11(2):219–35.

    CAS  Google Scholar 

  2. Jangid SK, Singh MK, Solanki VJ, et al. 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX)-based sheet explosive formulation with a hybrid binder system. Propellants Explos Pyrotech. 2016;41:377–82.

    Article  CAS  Google Scholar 

  3. Zhang S, Huang H, Luo G, et al. Characterization of the coverage of polymer-coated RDX. Chin J Energ Mater. 2014;22(1):57–61.

    Google Scholar 

  4. Yang Z, Ding L, Wu P, et al. Fabrication of RDX, HMX and CL-20 based microcapsules via in situ, polymerization of melamine–formaldehyde resins with reduced sensitivity. Chem Eng J. 2015;268:60–6.

    Article  CAS  Google Scholar 

  5. Shi X, Wang J, Li X, et al. Preparation and properties of RDX-based composite energetic microspheres. Chin J Energ Mater. 2015;23(5):428–32.

    Google Scholar 

  6. Yan Q, Zeman S, Elbeih A. Thermal behavior and decomposition kinetics of Viton A bonded explosives containing attractive cyclic nitramines. Thermochim Acta. 2013;562(24):56–64.

    Article  CAS  Google Scholar 

  7. Yan Q, Zeman S, Zhang T, et al. Non-isothermal decomposition behavior of Fluorel bonded explosives containing attractive cyclic nitramines. Thermochim Acta. 2013;574(2):10–8.

    Article  CAS  Google Scholar 

  8. Yan Q, Zeman S, Sánchez Jiménez PE, et al. The effect of polymer matrices on the thermal hazard properties of RDX-based PBXs by using model-free and combined kinetic analysis. J Hazard Mater. 2014;271(5):185–95.

    Article  CAS  Google Scholar 

  9. An C, Li F, Song X, et al. Surface Coating of RDX with a composite of TNT and an energetic-polymer and its safety investigation. Propellants Explos Pyrotech. 2009;34(5):400–5.

    Article  CAS  Google Scholar 

  10. Wang Y, Jiang W, Song D, et al. A feature on ensuring safety of superfine explosives. J Therm Anal Calorim. 2013;111(1):85–92.

    Article  CAS  Google Scholar 

  11. Shedge MT, Patel CH, Tadkod SK, et al. Polyvinyl acetate resin as a binder effecting mechanical and combustion properties of combustible cartridge case formulations. Defence Sci J. 2008;58(3):390–7.

    Article  CAS  Google Scholar 

  12. Wang X, Jin B, Peng R, et al. Synthesis, spectroscopic characterization, thermal stability and compatibility properties of energetic PVB-g-GAP copolymers. J Polym Res. 2015;22(9):1–11.

    Article  Google Scholar 

  13. Li X, Wang B, Zhao X, et al. Investigation into the coating and desensitization effect on HMX of F2604-2 and DOS composite system. Sci Technol Eng. 2015;15:169–72.

    Google Scholar 

  14. Balzer JE, Proud WG, Walley SM, et al. High-speed photographic study of the drop-weight impact response of RDX/DOS mixtures. Combust Flame. 2003;135(4):547–55.

    Article  CAS  Google Scholar 

  15. Li X, Wang B, Lin Q, et al. Compatibility study of DNTF with some insensitive energetic materials and inert materials. J Energ Mater. 2016;34(4):409–15.

    Article  CAS  Google Scholar 

  16. Diego F, Marco Z, Luigi C. Polystyrene microspheres and nanospheres produced by electrospray. Macromol Rapid Commun. 2006;27(23):2038–42.

    Article  Google Scholar 

  17. Almería B, Deng W, Fahmy TM, et al. Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery. J Colloid Interface Sci. 2010;343(1):125–33.

    Article  Google Scholar 

  18. Wang H, Jian G, Shi Y, et al. Electrospray formation of gelled nano-aluminum microspheres with superior reactivity. ACS Appl Mater Interfaces. 2013;5(15):6797–801.

    Article  CAS  Google Scholar 

  19. Wang H, Jian G, Egan GC, et al. Assembly and reactive properties of Al/CuO based nanothermite microparticles. Combust Flame. 2014;161(8):2203–8.

    Article  CAS  Google Scholar 

  20. Han Z, Wang D, Wang H, et al. Electrospray formation of RDX/ceria mixture and its thermal decomposition performance. J Therm Anal Calorim. 2016;123(1):1–7.

    Article  Google Scholar 

  21. Han Z, Han Y, Xu S. Preparation of nano-cerium dioxide and its effect on the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2014;116(1):273–8.

    Article  CAS  Google Scholar 

  22. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  23. Zhang T, Hu R, Xie Y, et al. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.

    Article  CAS  Google Scholar 

  24. Shi X, Wang J, Li X, et al. Preparation and characterization of HMX/Estane nanocomposites. Cent Eur J Energ Mater. 2014;11(3):433–42.

    Google Scholar 

  25. Beach NE, Canfield VK. Compatibility of explosives with polymers (III). Plast Rep. 1971;40:73–6.

    Google Scholar 

  26. Li X, Lin Q, Peng J, et al. Compatibility study between 2,6-diamino-3,5-dinitropyrazine-1- oxide and some high explosives by thermal and nonthermal techniques. J Therm Anal Calorim. 2017;127(3):2225–31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Li, B., Xie, L. et al. Electrospray preparation and thermal properties of the composites based on RDX. J Therm Anal Calorim 130, 835–842 (2017). https://doi.org/10.1007/s10973-017-6421-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6421-2

Keywords

Navigation