Skip to main content
Log in

Gasification characteristics and kinetic analysis of oily sludge

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work aims to investigate the gasification characteristics of oily sludge in CO2 atmosphere. In this study, the gasification characteristics of two typical oily sludge (SSOS and SLOS) in CO2 atmosphere were compared and studied by fixed bed experiment and thermogravimetric analysis system. TG-DTG analysis results showed that the reaction was completed at 600 °C, while the termination temperature of SLOS was 650 °C. The thermal conversion of oil phase (excluding asphaltene) of SSOS and SLOS both maintained between 200 and 550 °C, showing high similarity. In kinetics analysis part, the average Ea of SSOS and SLOS was about 90 kJ mol−1 and 110 kJ mol−1, respectively, which means the gasification reaction difficulty of SSOS was slightly lower than SLOS. The gasification products are mainly composed of H2 and CO. For CO, as the temperature exceeded 800 °C, the output surged, and the H2 output only increased slightly. The effect of gasification agent was much less than that of temperature. When R exceeded 1, the dosage of CO2 has little effect on the output of gas products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gong Z, Liu C, Wang M, Wang Z, Li X. Experimental study on catalytic pyrolysis of oil sludge under mild temperature. Sci Total Environ. 2020. https://doi.org/10.1016/j.scitotenv.2019.135039.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hu G, Li J, Zeng G. Recent development in the treatment of oily sludge from petroleum industry: a review. J Hazard Mater. 2013;261:470–90. https://doi.org/10.1016/j.jhazmat.2013.07.069.

    Article  CAS  PubMed  Google Scholar 

  3. Bandosz TJ, Block K. Municipal sludge-industrial sludge composite desulfurization adsorbents: synergy enhancing the catalytic properties. Environ Sci Technol. 2006;40(10):3378–83. https://doi.org/10.1021/es052272d.

    Article  CAS  PubMed  Google Scholar 

  4. Fan N, Yuguo L, Kun T, Baichun W, Mingdong Z, Wen R, et al. Volatile evolution during thermal treatment of oily sludge from a petroleum refinery wastewater treatment plant: TGA-MS, Py-GC(EGA)/MS and kinetics study. Fuel. 2020. https://doi.org/10.1016/j.fuel.2020.118332.

    Article  Google Scholar 

  5. Cho D-W, Park J, Kwon G, Lee J, Yim G-J, Jung W, et al. Zirconia-assisted pyrolysis of coffee waste in CO2 environment for the simultaneous production of fuel gas and composite adsorbent. J Hazard Mater. 2020. https://doi.org/10.1016/j.jhazmat.2019.121989.

    Article  PubMed  Google Scholar 

  6. Kim J-H, Oh J-I, Tsang YF, Park Y-K, Lee J, Kwon EE. CO2-assisted catalytic pyrolysis of digestate with steel slag. Energy. 2020. https://doi.org/10.1016/j.energy.2019.116529.

    Article  Google Scholar 

  7. Kim J-H, Oh J-I, Lee J, Kwon EE. Valorization of sewage sludge via a pyrolytic platform using carbon dioxide as a reactive gas medium. Energy. 2019;179:163–72. https://doi.org/10.1016/j.energy.2019.05.020.

    Article  CAS  Google Scholar 

  8. Kim J-H, Oh J-I, Baek K, Park Y-K, Zhang M, Lee J, et al. Thermolysis of crude oil sludge using CO2 as reactive gas medium. Energy Convers Manag. 2019;186:393–400. https://doi.org/10.1016/j.enconman.2019.02.070.

    Article  CAS  Google Scholar 

  9. Parvez AM, Afzal MT, Hebb TGV, Schmid M. Utilization of CO2 in thermochemical conversion of biomass for enhanced product properties: a review. J Co2 Utiliz. 2020. https://doi.org/10.1016/j.jcou.2020.101217.

    Article  Google Scholar 

  10. Alvarez A, Pizarro C, Garcia R, Bueno JL, Lavin AG. Determination of kinetic parameters for biomass combustion. Bioresour Technol. 2016;216:36–43. https://doi.org/10.1016/j.biortech.2016.05.039.

    Article  CAS  PubMed  Google Scholar 

  11. Alavi SE, Abdoli MA, Khorasheh F, Moghaddam AB. Non-isothermal pyrolysis of used lubricating oil and the catalytic effect of carbon-based nanomaterials on the process performance. J Therm Anal Calorim. 2020;139(2):1025–36. https://doi.org/10.1007/s10973-019-08436-w.

    Article  CAS  Google Scholar 

  12. Kaur R, Gera P, Jha MK, Bhaskar T. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresour Technol. 2018;250:422–8. https://doi.org/10.1016/j.biortech.2017.11.077.

    Article  CAS  PubMed  Google Scholar 

  13. Yan J, Jiao H, Li Z, Lei Z, Wang Z, Ren S, et al. Kinetic analysis and modeling of coal pyrolysis with model-free methods. Fuel. 2019;241:382–91. https://doi.org/10.1016/j.fuel.2018.12.079.

    Article  CAS  Google Scholar 

  14. Wang Z, Gong Z, Wang Z, Li X, Liu J, Tang C, et al. Pyrolysis performance and kinetic analysis of oily sludge. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10858-4.

    Article  Google Scholar 

  15. Francisco Alves JL, Gomes da Silva JC, da Silva Filho VF, Alves RF, de Araujo Galdino WV, De Sena RF. Kinetics and thermodynamics parameters evaluation of pyrolysis of invasive aquatic macrophytes to determine their bioenergy potentials. Biomass Bioenergy. 2019;121:28–40. https://doi.org/10.1016/j.biombioe.2018.12.015.

    Article  CAS  Google Scholar 

  16. Cheng S, Wang Y, Fumitake T, Kouji T, Li A, Kunio Y. Effect of steam and oil sludge ash additive on the products of oil sludge pyrolysis. ApEn. 2017;185:146–57. https://doi.org/10.1016/j.apenergy.2016.10.055.

    Article  CAS  Google Scholar 

  17. Senneca O, Chirone R, Cortese L, Salatino P. Pyrolysis and combustion of a solid refinery waste. Fuel. 2020. https://doi.org/10.1016/j.fuel.2020.117258.

    Article  Google Scholar 

  18. Mishra RK, Mohanty K. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential. Bioresour Technol. 2020. https://doi.org/10.1016/j.biortech.2020.123480.

    Article  PubMed  Google Scholar 

  19. Mishra RK, Mohanty K, Wang X. Pyrolysis kinetic behavior and Py-GC-MS analysis of waste dahlia flowers into renewable fuel and value-added chemicals. Fuel. 2020. https://doi.org/10.1016/j.fuel.2019.116338.

    Article  Google Scholar 

  20. Song Y, Hu J, Liu J, Evrendilek F, Buyukada M. CO2-assisted co-pyrolysis of textile dyeing sludge and hyperaccumulator biomass: dynamic and comparative analyses of evolved gases, bio-oils, biochars, and reaction mechanisms. J Hazard Mater. 2020. https://doi.org/10.1016/j.jhazmat.2020.123190.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Francisco Alves JL, Gomes Da Silva JC, Costa RL, Dos Santos Junior SF, da Silva Filho VF, Peralta Muniz Moreira RDF, et al. Investigation of the bioenergy potential of microalgae Scenedesmus acuminatus by physicochemical characterization and kinetic analysis of pyrolysis. J Therm Anal Calorim. 2019;135(6):3269–80. https://doi.org/10.1007/s10973-018-7506-2.

    Article  CAS  Google Scholar 

  22. Miao W, Li X, Wang Y, Lv Y. Pyrolysis characteristics of oil-field sludge and the comparison of kinetic analysis with two representative methods. J Pet Sci Eng. 2019. https://doi.org/10.1016/j.petrol.2019.106309.

    Article  Google Scholar 

  23. Paniagua S, Otero M, Coimbra RN, Escapa C, Garcia AI, Calvo LF. Simultaneous thermogravimetric and mass spectrometric monitoring of the pyrolysis, gasification and combustion of rice straw. J Therm Anal Calorim. 2015;121(2):603–11. https://doi.org/10.1007/s10973-015-4632-y.

    Article  CAS  Google Scholar 

  24. Zuo W, Jin B, Huang Y, Sun Y. Thermal decomposition of three kinds of sludge by TG-MS and PY-GC/MS. J Therm Anal Calorim. 2015;121(3):1297–307. https://doi.org/10.1007/s10973-015-4651-8.

    Article  CAS  Google Scholar 

  25. Paniagua S, Reyes S, Lima F, Pilipenko N, Calvo LF. Combustion of avocado crop residues: effect of crop variety and nature of nutrients. Fuel. 2021. https://doi.org/10.1016/j.fuel.2020.119660.

    Article  Google Scholar 

  26. Ali I, Tariq R, Naqvi SR, Khoja AH, Mehran MT, Naqvi M, et al. Kinetic and thermodynamic analyses of dried oily sludge pyrolysis. J Energy Inst. 2021;95:30–40. https://doi.org/10.1016/j.joei.2020.12.002.

    Article  CAS  Google Scholar 

  27. Mian I, Li X, Jian Y, Dacres OD, Zhong M, Liu J, et al. Kinetic study of biomass pellet pyrolysis by using distributed activation energy model and Coats Redfern methods and their comparison. Bioresour Technol. 2019. https://doi.org/10.1016/j.biortech.2019.122099.

    Article  PubMed  Google Scholar 

  28. Naseri A, Bidi M, Ahmadi MH. Thermodynamic and exergy analysis of a hydrogen and permeate water production process by a solar-driven transcritical CO2 power cycle with liquefied natural gas heat sink. Renew Energy. 2017;113:1215–28. https://doi.org/10.1016/j.renene.2017.06.082.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the State Key Laboratory of Pollution Control and Resource Reuse Foundation (No. PCRRF19023), Key Research and Development Program of Liaoning Province (No. 2020JH2/10300099), and Fundamental Research Funds for the Central Universities (No. 18CX02150A). We also thank the State Key Laboratory of Heavy Oil in China University of Petroleum (East China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqiang Gong or Zhenbo Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Gong, Z., Wang, Z. et al. Gasification characteristics and kinetic analysis of oily sludge. J Therm Anal Calorim 147, 10785–10799 (2022). https://doi.org/10.1007/s10973-022-11278-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11278-8

Keywords

Navigation